Approximation of -functions without changing their zero-set
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 3, page 611-632
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBroglia, F., and Tognoli, A.. "Approximation of $C^\infty $-functions without changing their zero-set." Annales de l'institut Fourier 39.3 (1989): 611-632. <http://eudml.org/doc/74842>.
@article{Broglia1989,
abstract = {For a $C^\infty $ function $\phi : M\rightarrow \{\Bbb R\}$ (where $M$ is a real algebraic manifold) the following problem is studied. If $\phi ^\{-1\}(0)$ is an algebraic subvariety of $M$, can $\phi $ be approximated by rational regular functions $f$ such that $f^\{-1\}(0)=\phi ^\{-1\}(0)?$We find that this is possible if and only if there exists a rational regular function $g: M\rightarrow \{\Bbb R\}$ such that $g^\{-1\}(0)=\phi ^\{-1\}(0)$ and g(x)$\cdot \phi (x)\ge 0$ for any $x$ in $\{\Bbb R\}^n$. Similar results are obtained also in the analytic and in the Nash cases.For non approximable functions the minimal flatness locus is also studied.},
author = {Broglia, F., Tognoli, A.},
journal = {Annales de l'institut Fourier},
keywords = {approximation of -functions by regular functions; algebraic manifold; zero set},
language = {eng},
number = {3},
pages = {611-632},
publisher = {Association des Annales de l'Institut Fourier},
title = {Approximation of $C^\infty $-functions without changing their zero-set},
url = {http://eudml.org/doc/74842},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Broglia, F.
AU - Tognoli, A.
TI - Approximation of $C^\infty $-functions without changing their zero-set
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 3
SP - 611
EP - 632
AB - For a $C^\infty $ function $\phi : M\rightarrow {\Bbb R}$ (where $M$ is a real algebraic manifold) the following problem is studied. If $\phi ^{-1}(0)$ is an algebraic subvariety of $M$, can $\phi $ be approximated by rational regular functions $f$ such that $f^{-1}(0)=\phi ^{-1}(0)?$We find that this is possible if and only if there exists a rational regular function $g: M\rightarrow {\Bbb R}$ such that $g^{-1}(0)=\phi ^{-1}(0)$ and g(x)$\cdot \phi (x)\ge 0$ for any $x$ in ${\Bbb R}^n$. Similar results are obtained also in the analytic and in the Nash cases.For non approximable functions the minimal flatness locus is also studied.
LA - eng
KW - approximation of -functions by regular functions; algebraic manifold; zero set
UR - http://eudml.org/doc/74842
ER -
References
top- [ABrT] F. ACQUISTAPACE, F. BROGLIA, A. TOGNOLI, An embedding theorem for real analytic spaces, Ann. S.N.S. Pisa, Serie IV, Vol VI, n.3 (1979), 415-426. Zbl0426.32001MR80m:32009
- [BeT] R. BENEDETTI, A. TOGNOLI, Teoremi di approssimazione in topologia differenziale I, Boll. U.M.I., (5) 14-B (1977), 866-887. Zbl0439.58004MR58 #6324
- [BiM] E. BIERSTONE, P.D. MILMAN, Arc-analytic functions, to appear. Zbl0723.32005
- [BocCC-R] J. BOCHNAK, M. COSTE, M.F. COSTE-ROY, Géométrie algébrique réelle, Erg. d. Math.12, Springer, 1987. Zbl0633.14016MR90b:14030
- [BorH] A. BOREL, A. HAEFLIGER, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. Zbl0102.38502MR26 #6990
- [BrL] T. BRÖCKER, L. LANDER, Differentiable germs and catastrophes, Cambridge Univ. Press, 1975. Zbl0302.58006
- [Hiro] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-324. Zbl0122.38603MR33 #7333
- [Hirs] M.W. HIRSH, Differential topology, Springer, 1976. Zbl0356.57001
- [LT] F. LAZZERI, A. TOGNOLI, Alcune proprietà degli spazi algebrici, Ann. S.N.S. Pisa, 24 (1970), 597-632. Zbl0205.25201MR45 #1909
- [M] B. MALGRANGE, Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. France, (1963), 113-127. Zbl0113.06302MR27 #2648
- [N1] R. NARASIMHAN, Introduction to the theory of analytic spaces, Lectures Notes in Math., Vol 25, Springer, 1966. Zbl0168.06003MR36 #428
- [N2] R. NARASIMHAN, Analysis on real and complex manifolds, Masson & Cie, Paris, 1968. Zbl0188.25803MR40 #4972
- [T1] A. TOGNOLI, Sulla classifizione dei fibrati analitici reali, Ann. S.N.S. Pisa, 21 (4) (1967), 709-744. Zbl0179.28703MR37 #928
- [T2] A. TOGNOLI, Su una congettura di Nash, Ann. S.N.S. Pisa, 27 (4) (1973), 167-185. Zbl0263.57011MR53 #434
- [T3] A. TOGNOLI, Un teorema di approssimazione relativo, Atti Accad. Naz. Lincei Rend., (8) 40 (1973), 496-502. Zbl0299.32002
- [T4] A. TOGNOLI, Algebraic geometry and Nash function, Institutiones Math., Vol 3, London, New York, Academic Press, 1978. Zbl0418.14002MR82g:14029
- [T5] A. TOGNOLI, Algebraic approximation of manifolds and spaces, Sém Bourbaki, n. 548 (1979/1980). Zbl0456.57012
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.