Approximation of C -functions without changing their zero-set

F. Broglia; A. Tognoli

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 3, page 611-632
  • ISSN: 0373-0956

Abstract

top
For a C function ϕ : M (where M is a real algebraic manifold) the following problem is studied. If ϕ - 1 ( 0 ) is an algebraic subvariety of M , can ϕ be approximated by rational regular functions f such that f - 1 ( 0 ) = ϕ - 1 ( 0 ) ? We find that this is possible if and only if there exists a rational regular function g : M such that g - 1 ( 0 ) = ϕ - 1 ( 0 ) and g(x) · ϕ ( x ) 0 for any x in n . Similar results are obtained also in the analytic and in the Nash cases.For non approximable functions the minimal flatness locus is also studied.

How to cite

top

Broglia, F., and Tognoli, A.. "Approximation of $C^\infty $-functions without changing their zero-set." Annales de l'institut Fourier 39.3 (1989): 611-632. <http://eudml.org/doc/74842>.

@article{Broglia1989,
abstract = {For a $C^\infty $ function $\phi : M\rightarrow \{\Bbb R\}$ (where $M$ is a real algebraic manifold) the following problem is studied. If $\phi ^\{-1\}(0)$ is an algebraic subvariety of $M$, can $\phi $ be approximated by rational regular functions $f$ such that $f^\{-1\}(0)=\phi ^\{-1\}(0)?$We find that this is possible if and only if there exists a rational regular function $g: M\rightarrow \{\Bbb R\}$ such that $g^\{-1\}(0)=\phi ^\{-1\}(0)$ and g(x)$\cdot \phi (x)\ge 0$ for any $x$ in $\{\Bbb R\}^n$. Similar results are obtained also in the analytic and in the Nash cases.For non approximable functions the minimal flatness locus is also studied.},
author = {Broglia, F., Tognoli, A.},
journal = {Annales de l'institut Fourier},
keywords = {approximation of -functions by regular functions; algebraic manifold; zero set},
language = {eng},
number = {3},
pages = {611-632},
publisher = {Association des Annales de l'Institut Fourier},
title = {Approximation of $C^\infty $-functions without changing their zero-set},
url = {http://eudml.org/doc/74842},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Broglia, F.
AU - Tognoli, A.
TI - Approximation of $C^\infty $-functions without changing their zero-set
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 3
SP - 611
EP - 632
AB - For a $C^\infty $ function $\phi : M\rightarrow {\Bbb R}$ (where $M$ is a real algebraic manifold) the following problem is studied. If $\phi ^{-1}(0)$ is an algebraic subvariety of $M$, can $\phi $ be approximated by rational regular functions $f$ such that $f^{-1}(0)=\phi ^{-1}(0)?$We find that this is possible if and only if there exists a rational regular function $g: M\rightarrow {\Bbb R}$ such that $g^{-1}(0)=\phi ^{-1}(0)$ and g(x)$\cdot \phi (x)\ge 0$ for any $x$ in ${\Bbb R}^n$. Similar results are obtained also in the analytic and in the Nash cases.For non approximable functions the minimal flatness locus is also studied.
LA - eng
KW - approximation of -functions by regular functions; algebraic manifold; zero set
UR - http://eudml.org/doc/74842
ER -

References

top
  1. [ABrT] F. ACQUISTAPACE, F. BROGLIA, A. TOGNOLI, An embedding theorem for real analytic spaces, Ann. S.N.S. Pisa, Serie IV, Vol VI, n.3 (1979), 415-426. Zbl0426.32001MR80m:32009
  2. [BeT] R. BENEDETTI, A. TOGNOLI, Teoremi di approssimazione in topologia differenziale I, Boll. U.M.I., (5) 14-B (1977), 866-887. Zbl0439.58004MR58 #6324
  3. [BiM] E. BIERSTONE, P.D. MILMAN, Arc-analytic functions, to appear. Zbl0723.32005
  4. [BocCC-R] J. BOCHNAK, M. COSTE, M.F. COSTE-ROY, Géométrie algébrique réelle, Erg. d. Math.12, Springer, 1987. Zbl0633.14016MR90b:14030
  5. [BorH] A. BOREL, A. HAEFLIGER, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. Zbl0102.38502MR26 #6990
  6. [BrL] T. BRÖCKER, L. LANDER, Differentiable germs and catastrophes, Cambridge Univ. Press, 1975. Zbl0302.58006
  7. [Hiro] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-324. Zbl0122.38603MR33 #7333
  8. [Hirs] M.W. HIRSH, Differential topology, Springer, 1976. Zbl0356.57001
  9. [LT] F. LAZZERI, A. TOGNOLI, Alcune proprietà degli spazi algebrici, Ann. S.N.S. Pisa, 24 (1970), 597-632. Zbl0205.25201MR45 #1909
  10. [M] B. MALGRANGE, Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. France, (1963), 113-127. Zbl0113.06302MR27 #2648
  11. [N1] R. NARASIMHAN, Introduction to the theory of analytic spaces, Lectures Notes in Math., Vol 25, Springer, 1966. Zbl0168.06003MR36 #428
  12. [N2] R. NARASIMHAN, Analysis on real and complex manifolds, Masson & Cie, Paris, 1968. Zbl0188.25803MR40 #4972
  13. [T1] A. TOGNOLI, Sulla classifizione dei fibrati analitici reali, Ann. S.N.S. Pisa, 21 (4) (1967), 709-744. Zbl0179.28703MR37 #928
  14. [T2] A. TOGNOLI, Su una congettura di Nash, Ann. S.N.S. Pisa, 27 (4) (1973), 167-185. Zbl0263.57011MR53 #434
  15. [T3] A. TOGNOLI, Un teorema di approssimazione relativo, Atti Accad. Naz. Lincei Rend., (8) 40 (1973), 496-502. Zbl0299.32002
  16. [T4] A. TOGNOLI, Algebraic geometry and Nash function, Institutiones Math., Vol 3, London, New York, Academic Press, 1978. Zbl0418.14002MR82g:14029
  17. [T5] A. TOGNOLI, Algebraic approximation of manifolds and spaces, Sém Bourbaki, n. 548 (1979/1980). Zbl0456.57012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.