Periods and entropy for Lorenz-like maps

Lluis Alsedà; J. Llibre; M. Misiurewicz; C. Tresser

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 4, page 929-952
  • ISSN: 0373-0956

Abstract

top
We characterize the set of periods and its structure for the Lorenz-like maps depending on the rotation interval. Also, for these maps we give the best lower bound of the topological entropy as a function of the rotation interval.

How to cite

top

Alsedà, Lluis, et al. "Periods and entropy for Lorenz-like maps." Annales de l'institut Fourier 39.4 (1989): 929-952. <http://eudml.org/doc/74862>.

@article{Alsedà1989,
abstract = {We characterize the set of periods and its structure for the Lorenz-like maps depending on the rotation interval. Also, for these maps we give the best lower bound of the topological entropy as a function of the rotation interval.},
author = {Alsedà, Lluis, Llibre, J., Misiurewicz, M., Tresser, C.},
journal = {Annales de l'institut Fourier},
keywords = {renormalization; Lorenz-like maps; the best lower bound; topological entropy; rotation interval},
language = {eng},
number = {4},
pages = {929-952},
publisher = {Association des Annales de l'Institut Fourier},
title = {Periods and entropy for Lorenz-like maps},
url = {http://eudml.org/doc/74862},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Alsedà, Lluis
AU - Llibre, J.
AU - Misiurewicz, M.
AU - Tresser, C.
TI - Periods and entropy for Lorenz-like maps
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 4
SP - 929
EP - 952
AB - We characterize the set of periods and its structure for the Lorenz-like maps depending on the rotation interval. Also, for these maps we give the best lower bound of the topological entropy as a function of the rotation interval.
LA - eng
KW - renormalization; Lorenz-like maps; the best lower bound; topological entropy; rotation interval
UR - http://eudml.org/doc/74862
ER -

References

top
  1. [ALMM] L. ALSEDÀ, J. LLIBRE, F. MAÑOSAS and M. MISIUREWICZ, Lower bounds for the topological entropy of continuous maps of the circle of degree one, Nonlinearity, 1 (1988), 463-479. Zbl0663.54023MR89m:58119
  2. [ALMS] L. ALSEDÀ, J. LLIBRE, F. MISIUREWICZ and C. SIMÓ, Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergod. Th. and Dynam. Sys., 5 (1985), 501-518. Zbl0592.54037MR87h:58185
  3. [ALM] L. ALSEDÀ, J. LLIBRE and M. MISIUREWICZ, Periodic orbits of maps of Y, Trans. Amer. Math. Soc., 313 (1989), 475-538. Zbl0803.54032MR90c:58145
  4. [BGMY] L. BLOCK, J. GUCKENHEIMER, M. MISIUREWICZ and L. S. YOUNG, Periodic points and topological entropy of one-dimensional maps, Springer, Lect. Notes in Math., 819 (1980), 18-39. Zbl0447.58028MR82j:58097
  5. [CGT] A. CHENCINER, J. M. GAMBAUDO and C. TRESSER, Une remarque sur la structure des endomorphismes de degré 1 du cercle, C.R. Acad. Sc. Paris, 299, Sér. I (1984), 145-148. Zbl0584.58004MR86b:58102
  6. [GPTT] J. M. GAMBAUDO, I. PROCACCIA, S. THOMAE and C. TRESSER, New universal scenarios for the onset of chaos in Lorenz type flows, Phys. Rev. Lett., 57 (1986), 925-928. 
  7. [GT] J. M. GAMBAUDO and C. TRESSER, Dynamique régulière ou chaotique. Applications du cercle ou de l'intervalle ayant une discontinuité, C.R. Acad. Sc., Paris, 300, Ser. I (1985), 311-313. Zbl0595.58031MR86i:58085
  8. [G1] J. GUCKENHEIMER, A strange, strange attractor, in the Hopf Bifurcation and its applications, Eds. J. E. Marsden and M. McCracken, Appl. Math. Sc. (Springer), 19 (1976), 368-381. 
  9. [G2] J. GUCKENHEIMER, Bifurcations of Dynamical Systems in : Dynamical Systems C.I.M.E. Lectures, Progress in Mathematics, 8, Birkhäuser, Boston, 1980. Zbl0451.58025MR82g:58065
  10. [H1] F. HOFBAUER, The maximal measure for linear mod. one transformations, J. London Math. Soc., 23 (1981), 92-112. Zbl0431.54025MR82c:28040
  11. [H2] F. HOFBAUER, Periodic points for piecewise monotonic transformation, Ergod. Th. and Dynam. Sys., 5 (1985), 237-256. Zbl0572.54036MR87i:58141
  12. [L] E. N. LORENZ, Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963), 130-141. 
  13. [M1] M. MISIUREWICZ, Periodic points of maps of degree one of a circle, Ergod Th. and Dynam. Sys., 2 (1982), 221-227. Zbl0508.58038MR84j:58101
  14. [M2] M. MISIUREWICZ, Twist sets for maps of a circle, Ergod. Th. and Dynam. Sys., 4 (1984), 391-404. Zbl0573.58019MR86m:58135
  15. [M3] M. MISIUREWICZ, Rotation intervals for a class of maps of the real line into itself, Ergod. Th. and Dynam. Sys., 6 (1986), 117-132. Zbl0615.54030MR87k:58131
  16. [MS] M. MISIUREWICZ and W. SZLENK, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. Zbl0445.54007MR82a:58030
  17. [MT] J. MILNOR and W. THURSTON, On iterated maps of the interval, in Dynamical Systems, Ed. J. C. Alexander, Lecture Notes in Math., 1342 (1988), 465-563. Zbl0664.58015MR90a:58083
  18. [P] W. PARRY, The Lorenz attractor and a related population model, Lect. Notes in Math., Springer, 729 (1979), 169-187. Zbl0431.92022MR81f:58027
  19. [R] A. RÉNYI, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493. Zbl0079.08901
  20. [RT] F. RHODES and C. L. THOMPSON, Rotation numbers for monotone functions on the circle, J. London Math. Soc., 34 (1986), 360-368. Zbl0623.58008MR88b:58127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.