Periods and entropy for Lorenz-like maps
Lluis Alsedà; J. Llibre; M. Misiurewicz; C. Tresser
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 4, page 929-952
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlsedà, Lluis, et al. "Periods and entropy for Lorenz-like maps." Annales de l'institut Fourier 39.4 (1989): 929-952. <http://eudml.org/doc/74862>.
@article{Alsedà1989,
abstract = {We characterize the set of periods and its structure for the Lorenz-like maps depending on the rotation interval. Also, for these maps we give the best lower bound of the topological entropy as a function of the rotation interval.},
author = {Alsedà, Lluis, Llibre, J., Misiurewicz, M., Tresser, C.},
journal = {Annales de l'institut Fourier},
keywords = {renormalization; Lorenz-like maps; the best lower bound; topological entropy; rotation interval},
language = {eng},
number = {4},
pages = {929-952},
publisher = {Association des Annales de l'Institut Fourier},
title = {Periods and entropy for Lorenz-like maps},
url = {http://eudml.org/doc/74862},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Alsedà, Lluis
AU - Llibre, J.
AU - Misiurewicz, M.
AU - Tresser, C.
TI - Periods and entropy for Lorenz-like maps
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 4
SP - 929
EP - 952
AB - We characterize the set of periods and its structure for the Lorenz-like maps depending on the rotation interval. Also, for these maps we give the best lower bound of the topological entropy as a function of the rotation interval.
LA - eng
KW - renormalization; Lorenz-like maps; the best lower bound; topological entropy; rotation interval
UR - http://eudml.org/doc/74862
ER -
References
top- [ALMM] L. ALSEDÀ, J. LLIBRE, F. MAÑOSAS and M. MISIUREWICZ, Lower bounds for the topological entropy of continuous maps of the circle of degree one, Nonlinearity, 1 (1988), 463-479. Zbl0663.54023MR89m:58119
- [ALMS] L. ALSEDÀ, J. LLIBRE, F. MISIUREWICZ and C. SIMÓ, Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergod. Th. and Dynam. Sys., 5 (1985), 501-518. Zbl0592.54037MR87h:58185
- [ALM] L. ALSEDÀ, J. LLIBRE and M. MISIUREWICZ, Periodic orbits of maps of Y, Trans. Amer. Math. Soc., 313 (1989), 475-538. Zbl0803.54032MR90c:58145
- [BGMY] L. BLOCK, J. GUCKENHEIMER, M. MISIUREWICZ and L. S. YOUNG, Periodic points and topological entropy of one-dimensional maps, Springer, Lect. Notes in Math., 819 (1980), 18-39. Zbl0447.58028MR82j:58097
- [CGT] A. CHENCINER, J. M. GAMBAUDO and C. TRESSER, Une remarque sur la structure des endomorphismes de degré 1 du cercle, C.R. Acad. Sc. Paris, 299, Sér. I (1984), 145-148. Zbl0584.58004MR86b:58102
- [GPTT] J. M. GAMBAUDO, I. PROCACCIA, S. THOMAE and C. TRESSER, New universal scenarios for the onset of chaos in Lorenz type flows, Phys. Rev. Lett., 57 (1986), 925-928.
- [GT] J. M. GAMBAUDO and C. TRESSER, Dynamique régulière ou chaotique. Applications du cercle ou de l'intervalle ayant une discontinuité, C.R. Acad. Sc., Paris, 300, Ser. I (1985), 311-313. Zbl0595.58031MR86i:58085
- [G1] J. GUCKENHEIMER, A strange, strange attractor, in the Hopf Bifurcation and its applications, Eds. J. E. Marsden and M. McCracken, Appl. Math. Sc. (Springer), 19 (1976), 368-381.
- [G2] J. GUCKENHEIMER, Bifurcations of Dynamical Systems in : Dynamical Systems C.I.M.E. Lectures, Progress in Mathematics, 8, Birkhäuser, Boston, 1980. Zbl0451.58025MR82g:58065
- [H1] F. HOFBAUER, The maximal measure for linear mod. one transformations, J. London Math. Soc., 23 (1981), 92-112. Zbl0431.54025MR82c:28040
- [H2] F. HOFBAUER, Periodic points for piecewise monotonic transformation, Ergod. Th. and Dynam. Sys., 5 (1985), 237-256. Zbl0572.54036MR87i:58141
- [L] E. N. LORENZ, Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963), 130-141.
- [M1] M. MISIUREWICZ, Periodic points of maps of degree one of a circle, Ergod Th. and Dynam. Sys., 2 (1982), 221-227. Zbl0508.58038MR84j:58101
- [M2] M. MISIUREWICZ, Twist sets for maps of a circle, Ergod. Th. and Dynam. Sys., 4 (1984), 391-404. Zbl0573.58019MR86m:58135
- [M3] M. MISIUREWICZ, Rotation intervals for a class of maps of the real line into itself, Ergod. Th. and Dynam. Sys., 6 (1986), 117-132. Zbl0615.54030MR87k:58131
- [MS] M. MISIUREWICZ and W. SZLENK, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. Zbl0445.54007MR82a:58030
- [MT] J. MILNOR and W. THURSTON, On iterated maps of the interval, in Dynamical Systems, Ed. J. C. Alexander, Lecture Notes in Math., 1342 (1988), 465-563. Zbl0664.58015MR90a:58083
- [P] W. PARRY, The Lorenz attractor and a related population model, Lect. Notes in Math., Springer, 729 (1979), 169-187. Zbl0431.92022MR81f:58027
- [R] A. RÉNYI, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493. Zbl0079.08901
- [RT] F. RHODES and C. L. THOMPSON, Rotation numbers for monotone functions on the circle, J. London Math. Soc., 34 (1986), 360-368. Zbl0623.58008MR88b:58127
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.