Harmonic morphisms and circle actions on 3- and 4-manifolds
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 1, page 177-212
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaird, Paul. "Harmonic morphisms and circle actions on 3- and 4-manifolds." Annales de l'institut Fourier 40.1 (1990): 177-212. <http://eudml.org/doc/74870>.
@article{Baird1990,
abstract = {Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms $\phi : M\rightarrow N$ from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on $M$ with possible fixed points. This restricts the topology of $M$. In all cases, a harmonic morphism $\phi : M\rightarrow N$ from a closed $(n+1)$-dimensional manifold to an $n$-dimensional manifold (n$\ge 2$, with $M$, $N$ analytic in the case $n=2)$ determines a locally smooth circle action on $M$.},
author = {Baird, Paul},
journal = {Annales de l'institut Fourier},
keywords = {Harmonic morphisms; generalization of the analytic functions; analytic 3- manifold},
language = {eng},
number = {1},
pages = {177-212},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic morphisms and circle actions on 3- and 4-manifolds},
url = {http://eudml.org/doc/74870},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Baird, Paul
TI - Harmonic morphisms and circle actions on 3- and 4-manifolds
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 177
EP - 212
AB - Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms $\phi : M\rightarrow N$ from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on $M$ with possible fixed points. This restricts the topology of $M$. In all cases, a harmonic morphism $\phi : M\rightarrow N$ from a closed $(n+1)$-dimensional manifold to an $n$-dimensional manifold (n$\ge 2$, with $M$, $N$ analytic in the case $n=2)$ determines a locally smooth circle action on $M$.
LA - eng
KW - Harmonic morphisms; generalization of the analytic functions; analytic 3- manifold
UR - http://eudml.org/doc/74870
ER -
References
top- [1] P. BAIRD, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Math., 87, Pitman, (1983). Zbl0515.58010MR85i:58038
- [2] P. BAIRD, Harmonic morphisms onto Riemann surfaces and generalized analytic functions, Ann. Inst. Fourier, Grenoble, 37-1 (1987), 135-173. Zbl0608.58015MR88h:31009
- [3] P. BAIRD and J. EELLS, A conservation law for harmonic maps, Geometry Symp. Utrecht (1980), Springer Notes, 894 (1981), 1-25. Zbl0485.58008MR83i:58031
- [4] P. BAIRD and J.C. WOOD, Bernstein theorems for harmonic morphisms from R3 and S3, Math. Ann. 280 (1988), 579-603. Zbl0621.58011MR90e:58027
- [5] P. BAIRD and J.C. WOOD, Harmonic morphisms and conformal foliations of 3-dimensional space forms, preprint. Zbl0744.53013
- [6] A. BERNARD, E.A. CAMPBELL and A.M. DAVIE, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 207-228. Zbl0386.30029MR81b:30088
- [7] G.E. BREDON, Introduction to Compact Transformation Groups, Academic Press, (1972). Zbl0246.57017MR54 #1265
- [8] M. BRELOT, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, (1960). Zbl0098.06903MR22 #9749
- [9] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. Zbl0138.36701MR30 #4960
- [10] J. EELLS, Regularity of certain harmonic maps, Global Riemannian Geometry, Durham (1982), E. Horwood (1984), 137-147. Zbl0616.58012
- [11] J. EELLS and L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. Zbl0401.58003MR82b:58033
- [12] J. EELLS and L. LEMAIRE, Selected topics in harmonic maps, C.B.M.S. Regional Conference Series 50, A.M.S. (1983). Zbl0515.58011MR85g:58030
- [13] J. EELLS and A. RATTO, Harmonic maps between spheres and ellipsoids, preprint, I.H.E.S., (1988). Zbl0752.58006
- [14] J. EELLS and J.H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. Zbl0122.40102MR29 #1603
- [15] D.B.A. EPSTEIN, Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. Zbl0231.58009MR44 #5981
- [16] D.B.A. EPSTEIN, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble 26-1 (1976), 265-282. Zbl0313.57017MR54 #8664
- [17] D.B.A. EPSTEIN, Pointwise periodic homeomorphisms, Proc. London Math. Soc., (3) 42 (1981), 415-460. Zbl0491.57006MR83e:57011
- [18] R. FINTUSHEL, Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc., 242 (1978), 377-390. Zbl0362.57015MR81e:57036
- [19] B. FUGLEDE, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 107-144. Zbl0339.53026MR80h:58023
- [20] M. GREENBERG, Lectures on algebraic topology, Benjamin, 1966.
- [21] R.E. GREENE and H. WU, Embeddings of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571.
- [22] D.A. HOFFMAN and R. OSSERMAN, The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., vol 28, n° 236 (1980). Zbl0469.53004MR82b:53012
- [23] T. ISHIHARA, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. Zbl0421.31006MR80k:58045
- [24] C.G.J. JACOBI, Uber Eine Particuläre Lösing der Partiellen Differential Gleichung ∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2 = 0, Crelle Journal für die reine und angewandte Mathematik, 36 (1847), 113-134.
- [25] J. MILNOR, Microbundles I, Topology, Vol. 3 Suppl. 1, (1964), 53-80. Zbl0124.38404MR28 #4553b
- [26] J. MILNOR, Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61, P.U.P., 1968. Zbl0184.48405MR39 #969
- [27] J. MILNOR, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups and 3-manifolds, ed. L.P. Neuwith, Annals of Math. Studies, 84, P.U.P. (1975), 175-225. Zbl0305.57003MR54 #6169
- [28] P.S. PAO, Non linear circle actions on the 4-sphere and twisting spun knots, Topology, 17 (1978), 291-296. Zbl0403.57006MR81h:57028
- [29] A. RATTO, Harmonic maps from deformed spheres to spheres, preprint. Zbl0685.58014
- [30] D. ROLFSEN, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, (1976). Zbl0339.55004MR58 #24236
- [31] P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983). Zbl0561.57001MR84m:57009
- [32] C.L. SIEGEL, Topics in Complex Function Theory I, Wiley, 1969. Zbl0184.11201
- [33] R.T. SMITH, Harmonic mappings of spheres, Amer. J. Math., 97 (1975), 364-385. Zbl0321.57020MR52 #11949
- [34] N. STEENROD, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951. Zbl0054.07103MR12,522b
- [35] W.P. THURSTON, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381. Zbl0496.57005
- [36] I. VAISMAN, Conformal foliations, Kodai Math. J., 2 (1979), 26-37. Zbl0402.57014MR80g:57038
- [37] J.C. WOOD, Harmonic morphisms, foliations and Gauss maps, Complex Differential Geometry, ed. Y.T. Siu, Contemporary Mathematics, 49, A.M.S., (1986), 145-183. Zbl0592.53020MR87i:58045
- [38] Y.H. YIU, Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Camb. Phil. Soc., 100 (1986), 493-504. Zbl0613.55009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.