Harmonic morphisms and circle actions on 3- and 4-manifolds

Paul Baird

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 1, page 177-212
  • ISSN: 0373-0956

Abstract

top
Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms ϕ : M N from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on M with possible fixed points. This restricts the topology of M . In all cases, a harmonic morphism ϕ : M N from a closed ( n + 1 ) -dimensional manifold to an n -dimensional manifold (n 2 , with M , N analytic in the case n = 2 ) determines a locally smooth circle action on M .

How to cite

top

Baird, Paul. "Harmonic morphisms and circle actions on 3- and 4-manifolds." Annales de l'institut Fourier 40.1 (1990): 177-212. <http://eudml.org/doc/74870>.

@article{Baird1990,
abstract = {Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms $\phi : M\rightarrow N$ from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on $M$ with possible fixed points. This restricts the topology of $M$. In all cases, a harmonic morphism $\phi : M\rightarrow N$ from a closed $(n+1)$-dimensional manifold to an $n$-dimensional manifold (n$\ge 2$, with $M$, $N$ analytic in the case $n=2)$ determines a locally smooth circle action on $M$.},
author = {Baird, Paul},
journal = {Annales de l'institut Fourier},
keywords = {Harmonic morphisms; generalization of the analytic functions; analytic 3- manifold},
language = {eng},
number = {1},
pages = {177-212},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic morphisms and circle actions on 3- and 4-manifolds},
url = {http://eudml.org/doc/74870},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Baird, Paul
TI - Harmonic morphisms and circle actions on 3- and 4-manifolds
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 177
EP - 212
AB - Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms $\phi : M\rightarrow N$ from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on $M$ with possible fixed points. This restricts the topology of $M$. In all cases, a harmonic morphism $\phi : M\rightarrow N$ from a closed $(n+1)$-dimensional manifold to an $n$-dimensional manifold (n$\ge 2$, with $M$, $N$ analytic in the case $n=2)$ determines a locally smooth circle action on $M$.
LA - eng
KW - Harmonic morphisms; generalization of the analytic functions; analytic 3- manifold
UR - http://eudml.org/doc/74870
ER -

References

top
  1. [1] P. BAIRD, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Math., 87, Pitman, (1983). Zbl0515.58010MR85i:58038
  2. [2] P. BAIRD, Harmonic morphisms onto Riemann surfaces and generalized analytic functions, Ann. Inst. Fourier, Grenoble, 37-1 (1987), 135-173. Zbl0608.58015MR88h:31009
  3. [3] P. BAIRD and J. EELLS, A conservation law for harmonic maps, Geometry Symp. Utrecht (1980), Springer Notes, 894 (1981), 1-25. Zbl0485.58008MR83i:58031
  4. [4] P. BAIRD and J.C. WOOD, Bernstein theorems for harmonic morphisms from R3 and S3, Math. Ann. 280 (1988), 579-603. Zbl0621.58011MR90e:58027
  5. [5] P. BAIRD and J.C. WOOD, Harmonic morphisms and conformal foliations of 3-dimensional space forms, preprint. Zbl0744.53013
  6. [6] A. BERNARD, E.A. CAMPBELL and A.M. DAVIE, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 207-228. Zbl0386.30029MR81b:30088
  7. [7] G.E. BREDON, Introduction to Compact Transformation Groups, Academic Press, (1972). Zbl0246.57017MR54 #1265
  8. [8] M. BRELOT, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, (1960). Zbl0098.06903MR22 #9749
  9. [9] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. Zbl0138.36701MR30 #4960
  10. [10] J. EELLS, Regularity of certain harmonic maps, Global Riemannian Geometry, Durham (1982), E. Horwood (1984), 137-147. Zbl0616.58012
  11. [11] J. EELLS and L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. Zbl0401.58003MR82b:58033
  12. [12] J. EELLS and L. LEMAIRE, Selected topics in harmonic maps, C.B.M.S. Regional Conference Series 50, A.M.S. (1983). Zbl0515.58011MR85g:58030
  13. [13] J. EELLS and A. RATTO, Harmonic maps between spheres and ellipsoids, preprint, I.H.E.S., (1988). Zbl0752.58006
  14. [14] J. EELLS and J.H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. Zbl0122.40102MR29 #1603
  15. [15] D.B.A. EPSTEIN, Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. Zbl0231.58009MR44 #5981
  16. [16] D.B.A. EPSTEIN, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble 26-1 (1976), 265-282. Zbl0313.57017MR54 #8664
  17. [17] D.B.A. EPSTEIN, Pointwise periodic homeomorphisms, Proc. London Math. Soc., (3) 42 (1981), 415-460. Zbl0491.57006MR83e:57011
  18. [18] R. FINTUSHEL, Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc., 242 (1978), 377-390. Zbl0362.57015MR81e:57036
  19. [19] B. FUGLEDE, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 107-144. Zbl0339.53026MR80h:58023
  20. [20] M. GREENBERG, Lectures on algebraic topology, Benjamin, 1966. 
  21. [21] R.E. GREENE and H. WU, Embeddings of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. 
  22. [22] D.A. HOFFMAN and R. OSSERMAN, The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., vol 28, n° 236 (1980). Zbl0469.53004MR82b:53012
  23. [23] T. ISHIHARA, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. Zbl0421.31006MR80k:58045
  24. [24] C.G.J. JACOBI, Uber Eine Particuläre Lösing der Partiellen Differential Gleichung ∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2 = 0, Crelle Journal für die reine und angewandte Mathematik, 36 (1847), 113-134. 
  25. [25] J. MILNOR, Microbundles I, Topology, Vol. 3 Suppl. 1, (1964), 53-80. Zbl0124.38404MR28 #4553b
  26. [26] J. MILNOR, Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61, P.U.P., 1968. Zbl0184.48405MR39 #969
  27. [27] J. MILNOR, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups and 3-manifolds, ed. L.P. Neuwith, Annals of Math. Studies, 84, P.U.P. (1975), 175-225. Zbl0305.57003MR54 #6169
  28. [28] P.S. PAO, Non linear circle actions on the 4-sphere and twisting spun knots, Topology, 17 (1978), 291-296. Zbl0403.57006MR81h:57028
  29. [29] A. RATTO, Harmonic maps from deformed spheres to spheres, preprint. Zbl0685.58014
  30. [30] D. ROLFSEN, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, (1976). Zbl0339.55004MR58 #24236
  31. [31] P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983). Zbl0561.57001MR84m:57009
  32. [32] C.L. SIEGEL, Topics in Complex Function Theory I, Wiley, 1969. Zbl0184.11201
  33. [33] R.T. SMITH, Harmonic mappings of spheres, Amer. J. Math., 97 (1975), 364-385. Zbl0321.57020MR52 #11949
  34. [34] N. STEENROD, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951. Zbl0054.07103MR12,522b
  35. [35] W.P. THURSTON, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381. Zbl0496.57005
  36. [36] I. VAISMAN, Conformal foliations, Kodai Math. J., 2 (1979), 26-37. Zbl0402.57014MR80g:57038
  37. [37] J.C. WOOD, Harmonic morphisms, foliations and Gauss maps, Complex Differential Geometry, ed. Y.T. Siu, Contemporary Mathematics, 49, A.M.S., (1986), 145-183. Zbl0592.53020MR87i:58045
  38. [38] Y.H. YIU, Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Camb. Phil. Soc., 100 (1986), 493-504. Zbl0613.55009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.