Minimal resolution and stable reduction of X 0 ( N )

Bas Edixhoven

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 1, page 31-67
  • ISSN: 0373-0956

Abstract

top
Let N 1 be an integer. Let X 0 ( N ) be the modular curve over Z , as constructed by Katz and Mazur. The minimal resolution of X 0 ( N ) over Z [ 1 / 6 ] is computed. Let p 5 be a prime, such that N = p 2 M , with M prime to p . Let n = ( p 2 - 1 ) / 2 . It is shown that X 0 ( N ) has stable reduction at p over Q [ p n ] , and the fibre at p of the stable model is computed.

How to cite

top

Edixhoven, Bas. "Minimal resolution and stable reduction of $X_0(N)$." Annales de l'institut Fourier 40.1 (1990): 31-67. <http://eudml.org/doc/74873>.

@article{Edixhoven1990,
abstract = {Let $N\ge 1$ be an integer. Let $X_0(N)$ be the modular curve over $\mathbf\{ Z\}$, as constructed by Katz and Mazur. The minimal resolution of $X_ 0(N)$ over $\mathbf\{ Z\}[1/6]$ is computed. Let $p\ge 5$ be a prime, such that $N=p^ 2M$, with $M$ prime to $p$. Let $n=(p^ 2-1)/2$. It is shown that $X_ 0(N)$ has stable reduction at $p$ over $\mathbf\{ Q\}[\@root n \of \{p\}]$, and the fibre at $p$ of the stable model is computed.},
author = {Edixhoven, Bas},
journal = {Annales de l'institut Fourier},
keywords = {modular curve; minimal resolution; stable reduction},
language = {eng},
number = {1},
pages = {31-67},
publisher = {Association des Annales de l'Institut Fourier},
title = {Minimal resolution and stable reduction of $X_0(N)$},
url = {http://eudml.org/doc/74873},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Edixhoven, Bas
TI - Minimal resolution and stable reduction of $X_0(N)$
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 31
EP - 67
AB - Let $N\ge 1$ be an integer. Let $X_0(N)$ be the modular curve over $\mathbf{ Z}$, as constructed by Katz and Mazur. The minimal resolution of $X_ 0(N)$ over $\mathbf{ Z}[1/6]$ is computed. Let $p\ge 5$ be a prime, such that $N=p^ 2M$, with $M$ prime to $p$. Let $n=(p^ 2-1)/2$. It is shown that $X_ 0(N)$ has stable reduction at $p$ over $\mathbf{ Q}[\@root n \of {p}]$, and the fibre at $p$ of the stable model is computed.
LA - eng
KW - modular curve; minimal resolution; stable reduction
UR - http://eudml.org/doc/74873
ER -

References

top
  1. [1] B.J. BIRCH and W. KUYK, Modular functions of one variable IV, Springer Lecture Notes in Mathematics, 476 (1975). Zbl0315.14014
  2. [2] P. DELIGNE and N. KATZ, Séminaire de géométrie algébrique 7 II, Springer Lecture Notes in Mathematics, 340 (1973). Zbl0258.00005MR50 #7135
  3. [3] P. DELIGNE and M. RAPOPORT, Les schémas de modules des courbes elliptiques. In Modular Functions of One Variable II, Springer Lecture Notes in Mathematics, 349 (1973). Zbl0281.14010MR49 #2762
  4. [4] B.H. GROSS and D.B. ZAGIER, Heegner points and derivatives of L-series, Invent. Math., 84 (1986), 225-320 Zbl0608.14019MR87j:11057
  5. [5] A. GROTHENDIECK, Eléments de géométrie algébrique, Ch. I, II, III, IV, Publications Mathématiques de l'I.H.E.S, 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967). 
  6. [6] A. GROTHENDIECK, Séminaire de géométrie algébrique I : Revêtements étales et groupe fondamental, Springer Lecture Notes in Mathematics, 224 (1971). Zbl0234.14002
  7. [7] R. HARTSHORNE, Curves with high selfintersection on algebraic surfaces, Publications Mathématiques de l'I.H.E.S, 36 (1969). Zbl0197.17505MR42 #1826
  8. [8] R. HARTSHORNE, Algebraic geometry, Springer Graduate Texts in Mathematics, 52 (1977). Zbl0367.14001MR57 #3116
  9. [9] N.M. KATZ and B. MAZUR, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, Princeton University Press, 108 (1985). Zbl0576.14026MR86i:11024
  10. [10] J. LIPMAN, Rational singularities, with applications to algebraic surfaces and unique factorization, Publications Mathématiques de l'I.H.E.S, 36 (1969). Zbl0181.48903MR43 #1986
  11. [11] B. MAZUR, Modular curves and the Eisenstein ideal, Publications Mathématiques de l'I.H.E.S, 47 (1977), 33-186. Zbl0394.14008MR80c:14015
  12. [12] J.F. MESTRE, Courbes de Weil et courbes supersingulières, Séminaire de théorie des nombres 1984-1985, Université de Bordeaux 1. Zbl0599.14031
  13. [13] A. PIZER, An algorithm for computing modular forms on Γ0(N), Journal of Algebra, 64 (1980), 340-390. Zbl0433.10012MR83g:10020
  14. [14] A. PIZER, Theta series and modular forms of level p2M, Compositio Math., 40 (1980), 177-241. Zbl0416.10021MR81k:10040
  15. [15] J.-P. SERRE, Colloque d'algèbre, 6-7 mai 1967, ENSJF. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.