Minimal resolution and stable reduction of

Bas Edixhoven

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 1, page 31-67
  • ISSN: 0373-0956

Abstract

top
Let be an integer. Let be the modular curve over , as constructed by Katz and Mazur. The minimal resolution of over is computed. Let be a prime, such that , with prime to . Let . It is shown that has stable reduction at over , and the fibre at of the stable model is computed.

How to cite

top

Edixhoven, Bas. "Minimal resolution and stable reduction of $X_0(N)$." Annales de l'institut Fourier 40.1 (1990): 31-67. <http://eudml.org/doc/74873>.

@article{Edixhoven1990,
abstract = {Let $N\ge 1$ be an integer. Let $X_0(N)$ be the modular curve over $\mathbf\{ Z\}$, as constructed by Katz and Mazur. The minimal resolution of $X_ 0(N)$ over $\mathbf\{ Z\}[1/6]$ is computed. Let $p\ge 5$ be a prime, such that $N=p^ 2M$, with $M$ prime to $p$. Let $n=(p^ 2-1)/2$. It is shown that $X_ 0(N)$ has stable reduction at $p$ over $\mathbf\{ Q\}[\@root n \of \{p\}]$, and the fibre at $p$ of the stable model is computed.},
author = {Edixhoven, Bas},
journal = {Annales de l'institut Fourier},
keywords = {modular curve; minimal resolution; stable reduction},
language = {eng},
number = {1},
pages = {31-67},
publisher = {Association des Annales de l'Institut Fourier},
title = {Minimal resolution and stable reduction of $X_0(N)$},
url = {http://eudml.org/doc/74873},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Edixhoven, Bas
TI - Minimal resolution and stable reduction of $X_0(N)$
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 31
EP - 67
AB - Let $N\ge 1$ be an integer. Let $X_0(N)$ be the modular curve over $\mathbf{ Z}$, as constructed by Katz and Mazur. The minimal resolution of $X_ 0(N)$ over $\mathbf{ Z}[1/6]$ is computed. Let $p\ge 5$ be a prime, such that $N=p^ 2M$, with $M$ prime to $p$. Let $n=(p^ 2-1)/2$. It is shown that $X_ 0(N)$ has stable reduction at $p$ over $\mathbf{ Q}[\@root n \of {p}]$, and the fibre at $p$ of the stable model is computed.
LA - eng
KW - modular curve; minimal resolution; stable reduction
UR - http://eudml.org/doc/74873
ER -

References

top
  1. [1] B.J. BIRCH and W. KUYK, Modular functions of one variable IV, Springer Lecture Notes in Mathematics, 476 (1975). Zbl0315.14014
  2. [2] P. DELIGNE and N. KATZ, Séminaire de géométrie algébrique 7 II, Springer Lecture Notes in Mathematics, 340 (1973). Zbl0258.00005MR50 #7135
  3. [3] P. DELIGNE and M. RAPOPORT, Les schémas de modules des courbes elliptiques. In Modular Functions of One Variable II, Springer Lecture Notes in Mathematics, 349 (1973). Zbl0281.14010MR49 #2762
  4. [4] B.H. GROSS and D.B. ZAGIER, Heegner points and derivatives of L-series, Invent. Math., 84 (1986), 225-320 Zbl0608.14019MR87j:11057
  5. [5] A. GROTHENDIECK, Eléments de géométrie algébrique, Ch. I, II, III, IV, Publications Mathématiques de l'I.H.E.S, 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967). 
  6. [6] A. GROTHENDIECK, Séminaire de géométrie algébrique I : Revêtements étales et groupe fondamental, Springer Lecture Notes in Mathematics, 224 (1971). Zbl0234.14002
  7. [7] R. HARTSHORNE, Curves with high selfintersection on algebraic surfaces, Publications Mathématiques de l'I.H.E.S, 36 (1969). Zbl0197.17505MR42 #1826
  8. [8] R. HARTSHORNE, Algebraic geometry, Springer Graduate Texts in Mathematics, 52 (1977). Zbl0367.14001MR57 #3116
  9. [9] N.M. KATZ and B. MAZUR, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, Princeton University Press, 108 (1985). Zbl0576.14026MR86i:11024
  10. [10] J. LIPMAN, Rational singularities, with applications to algebraic surfaces and unique factorization, Publications Mathématiques de l'I.H.E.S, 36 (1969). Zbl0181.48903MR43 #1986
  11. [11] B. MAZUR, Modular curves and the Eisenstein ideal, Publications Mathématiques de l'I.H.E.S, 47 (1977), 33-186. Zbl0394.14008MR80c:14015
  12. [12] J.F. MESTRE, Courbes de Weil et courbes supersingulières, Séminaire de théorie des nombres 1984-1985, Université de Bordeaux 1. Zbl0599.14031
  13. [13] A. PIZER, An algorithm for computing modular forms on Γ0(N), Journal of Algebra, 64 (1980), 340-390. Zbl0433.10012MR83g:10020
  14. [14] A. PIZER, Theta series and modular forms of level p2M, Compositio Math., 40 (1980), 177-241. Zbl0416.10021MR81k:10040
  15. [15] J.-P. SERRE, Colloque d'algèbre, 6-7 mai 1967, ENSJF. 

NotesEmbed ?

top

You must be logged in to post comments.