Curves with high self-intersection on algebraic surfaces

Robin Hartshorne

Publications Mathématiques de l'IHÉS (1969)

  • Volume: 36, page 111-125
  • ISSN: 0073-8301

How to cite

top

Hartshorne, Robin. "Curves with high self-intersection on algebraic surfaces." Publications Mathématiques de l'IHÉS 36 (1969): 111-125. <http://eudml.org/doc/103888>.

@article{Hartshorne1969,
author = {Hartshorne, Robin},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {algebraic geometry},
language = {eng},
pages = {111-125},
publisher = {Institut des Hautes Études Scientifiques},
title = {Curves with high self-intersection on algebraic surfaces},
url = {http://eudml.org/doc/103888},
volume = {36},
year = {1969},
}

TY - JOUR
AU - Hartshorne, Robin
TI - Curves with high self-intersection on algebraic surfaces
JO - Publications Mathématiques de l'IHÉS
PY - 1969
PB - Institut des Hautes Études Scientifiques
VL - 36
SP - 111
EP - 125
LA - eng
KW - algebraic geometry
UR - http://eudml.org/doc/103888
ER -

References

top
  1. [1] W. L. CHOW, On meromorphic maps of algebraic varieties, Annals of Math., 89 (1969), 391-403. Zbl0184.46501MR41 #1728
  2. [2] A. GROTHENDIECK, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 79 (1957), 121-138. Zbl0079.17001MR19,315b
  3. [3] (= EGA). A. GROTHENDIECK, Éléments de géométrie algébrique, Publ. Math. I.H.E.S. (1960 ss.). 
  4. [4] (= SGA 1). A. GROTHENDIECK, Séminaire de géométrie algébrique de l'I.H.E.S. (1960-1961). 
  5. [5] (= AVB). R. HARTSHORNE, Ample vector bundles, Publ. Math. I.H.E.S., 29 (1966), 63-94. Zbl0173.49003MR33 #1313
  6. [6] R. HARTSHORNE, Cohomological dimension of algebraic varieties, Annals of Math., 88 (1968), 403-450. Zbl0169.23302MR38 #1103
  7. [7] H. HIRONAKA, On some formal imbeddings, Illinois J. Math., 12 (1968), 587-602. Zbl0169.52302MR39 #2773
  8. [8] H. HIRONAKA and H. MATSUMURA, Formal functions and formal embeddings, J. Math. Soc. Japan, 20 (1968), 52-82. Zbl0157.27701MR40 #4274
  9. [9] T. KNAPP, The minimal and relatively minimal models of the function field of a ruled surface, Thesis, Harvard (1960) (unpublished). 
  10. [10] D. MUMFORD, Enriques' classification of surfaces in char. p, I, to appear. Zbl0188.53201
  11. [11] M. NAGATA, On rational surfaces, I, Mem. Coll. Sci. Kyoto, sér. A, 32 (1960), 351-370. Zbl0100.16703MR23 #A3739
  12. [12] M. NOETHER, Zur Theorie der eindeutigen Elementartransformationen, Math. Ann., 5 (1872), 635-639. Zbl04.0419.01JFM04.0419.01
  13. [13] I. R. ŠAFAREVIČ et al., Algebraic surfaces, Proc. Steklov Inst. Math., 75 (1965); trans. by Amer. Math. Soc. (1967). 
  14. [14] O. ZARISKI, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publ. Math. Soc. of Japan, 4 (1958). Zbl0093.33904MR20 #3872

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.