Theta series and modular forms of level p 2 M

Arnold Pizer

Compositio Mathematica (1980)

  • Volume: 40, Issue: 2, page 177-241
  • ISSN: 0010-437X

How to cite


Pizer, Arnold. "Theta series and modular forms of level $p^2M$." Compositio Mathematica 40.2 (1980): 177-241. <>.

author = {Pizer, Arnold},
journal = {Compositio Mathematica},
keywords = {Theta series; modular forms; quaternion algebra; trace formula for Brandt matrices; Hecke operators; canonical involution; W-operators of Atkin- Lehner},
language = {eng},
number = {2},
pages = {177-241},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Theta series and modular forms of level $p^2M$},
url = {},
volume = {40},
year = {1980},

AU - Pizer, Arnold
TI - Theta series and modular forms of level $p^2M$
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 2
SP - 177
EP - 241
LA - eng
KW - Theta series; modular forms; quaternion algebra; trace formula for Brandt matrices; Hecke operators; canonical involution; W-operators of Atkin- Lehner
UR -
ER -


  1. [1] A. Atkin and J. Lehner: Hecke Operators for Γ0(m). Math. Ann.185 (1970) 134-160. Zbl0177.34901
  2. [2] M. Eichler: Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math.195 (1956) 127-151. Zbl0068.03303MR80767
  3. [3] M. Eichler: The Basis problem for modular forms and the traces of the Hecke operators. Lecture Notes in Math. 320, Springer-Verlag, pp. 75-151. Zbl0258.10013MR485698
  4. [4] S. Gelbart: Automorphic Forms on Adele Groups, Annals of Math. Studies No. 83, Princeton Univ. Press (1975). Zbl0329.10018MR379375
  5. [5] H. Hijikata: Explicit formula of the traces of the Hecke operators for Γ0(N): J. Math. Soc. Japan26 (1974) 56-82. Zbl0266.12009
  6. [6] H. Jacquet, R. Langlands: Automorphic Forms on GL(2). Lecture Notes in Math. No. 114, Springer-Verlag (1970). Zbl0236.12010MR401654
  7. [7] J.P. Labesse and R.P. Landlangs: 'L-indistinguishability for SL 2' (preprint)Institute for Advanced Study, Princeton, NJ. 
  8. [8] T. Lam: The Algebraic Theory of Quadratic Forms. W.A. Benjamin, (1973). Zbl0259.10019MR396410
  9. [9] S. Lang: Algebra. Addison-Wesley (1971). Zbl0848.13001MR783636
  10. [9a] W.W. Li: Newforms and Functional Equations. Math. Ann.212 (1975) 285-315. Zbl0278.10026MR369263
  11. [10] A. Ogg: Modular Forms and Dirichlet Series, W.A. Benjamin (1969). Zbl0191.38101MR256993
  12. [11] W. Parry: A negative result on the representation of modular forms by theta series (to appear). Zbl0409.10014MR546669
  13. [12] A. Pizer: On the Arithmetic of Quaternion Algebras II. J. Math. Soc. Japan28 (1976) 676-688. Zbl0344.12005MR432600
  14. [ 13] A. Pizer: The Representability of Modular Forms by Theta Series. J. Math. Soc. Japan28 (1976) 689-698. Zbl0344.10012MR422162
  15. [14] A. Pizer: The Action of the Canonical Involution on Modular Forms of Weight 2 on Γ0(M). Math. Ann.226 (1977) 99-116. Zbl0324.10017
  16. [15] A. Pizer: An Algorithm for Computing Modular Forms on Γ0(N) (to appear). Zbl0433.10012
  17. [16] I. Reiner: Maximal Orders, Academic Press (1975). Zbl0305.16001MR1972204
  18. [17] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press (1971). Zbl0221.10029MR314766
  19. [18] C. Siegal: Uber die analytische Theory der quadratic Formen, Gesammelte Abhandlungen, Band I, Springer-Verlag, (1966). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.