Geometry of an étale covering of the p -adic upper half plane

Jeremy Teitelbaum

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 1, page 69-78
  • ISSN: 0373-0956

Abstract

top
We describe the rigid geometry of the first layer in the tower of coverings of the p -adic upper half plane constructed by Drinfeld. Using our results, we describe the stable fiber at p of certain Shimura curves.

How to cite

top

Teitelbaum, Jeremy. "Geometry of an étale covering of the $p$-adic upper half plane." Annales de l'institut Fourier 40.1 (1990): 69-78. <http://eudml.org/doc/74874>.

@article{Teitelbaum1990,
abstract = {We describe the rigid geometry of the first layer in the tower of coverings of the $p$-adic upper half plane constructed by Drinfeld. Using our results, we describe the stable fiber at p of certain Shimura curves.},
author = {Teitelbaum, Jeremy},
journal = {Annales de l'institut Fourier},
keywords = {p-adic uniformization; formal group; tower of coverings of the p-adic upper half plane; Shimura curves},
language = {eng},
number = {1},
pages = {69-78},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometry of an étale covering of the $p$-adic upper half plane},
url = {http://eudml.org/doc/74874},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Teitelbaum, Jeremy
TI - Geometry of an étale covering of the $p$-adic upper half plane
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 69
EP - 78
AB - We describe the rigid geometry of the first layer in the tower of coverings of the $p$-adic upper half plane constructed by Drinfeld. Using our results, we describe the stable fiber at p of certain Shimura curves.
LA - eng
KW - p-adic uniformization; formal group; tower of coverings of the p-adic upper half plane; Shimura curves
UR - http://eudml.org/doc/74874
ER -

References

top
  1. [1] V.G. DRINFELD, Elliptic modules, Math. USSR Sbornik, 23(4) (1976). 
  2. [2] V.G. DRINFELD, Coverings of p-adic symmetric regions, Functional Analysis and its Applications, 10(2) (1976), 29-40. Zbl0346.14010MR54 #10281
  3. [3] A. KURIHARA, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo, Sec. IA, 25 (1979). Zbl0428.14012MR80e:14010
  4. [4] D. MUMFORD, An analytic construction of degenerating curves over complete local rings, Compos. Math., 24 (1972), 129-174. Zbl0228.14011MR50 #4592
  5. [5] M. RAYNAUD, Schémas en groupes de type (p,...,p), Bull. Soc. Math. France, 102 (1974). Zbl0325.14020MR54 #7488
  6. [6] K. RIBET, Bimodules and abelian surfaces, Technical Report PAM-423, Center for Pure and Applied Mathematics, University of California, Berkeley, August 1988. Zbl0742.11033
  7. [7] P. SCHNEIDER and U. STUHLER, The cohomology of p-adic symmetric spaces, preprint, 1988. Zbl0751.14016
  8. [8] J. TEITELBAUM, On Drinfeld's universal formal group over the p-adic upper half plane, Mathematische Annalen, 284 (1989), 647-674. Zbl0682.14032MR90j:11050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.