Factorisability and wildly ramified Galois extensions

David J. Burns

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 2, page 393-430
  • ISSN: 0373-0956

Abstract

top
Let L / K be an abelian extension of p -adic fields, and let 𝒪 denote the valuation ring of K . We study ideals of the valuation ring of L as integral representations of the Galois group Gal ( L / K ) . Assuming K is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an 𝒪 -order in the group algebra K [ Gal ( l / K ) ] . We obtain several general and also explicit new results.

How to cite

top

Burns, David J.. "Factorisability and wildly ramified Galois extensions." Annales de l'institut Fourier 41.2 (1991): 393-430. <http://eudml.org/doc/74923>.

@article{Burns1991,
abstract = {Let $L/K$ be an abelian extension of $p$-adic fields, and let $\{\cal O\}$ denote the valuation ring of $K$. We study ideals of the valuation ring of $L$ as integral representations of the Galois group $\{\rm Gal\}(L/K)$. Assuming $K$ is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an $\{\cal O\}$-order in the group algebra $K[\{\rm Gal\}(l/K)]$. We obtain several general and also explicit new results.},
author = {Burns, David J.},
journal = {Annales de l'institut Fourier},
keywords = {ideals; valuation ring; integral representations; Galois group; factorisability},
language = {eng},
number = {2},
pages = {393-430},
publisher = {Association des Annales de l'Institut Fourier},
title = {Factorisability and wildly ramified Galois extensions},
url = {http://eudml.org/doc/74923},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Burns, David J.
TI - Factorisability and wildly ramified Galois extensions
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 393
EP - 430
AB - Let $L/K$ be an abelian extension of $p$-adic fields, and let ${\cal O}$ denote the valuation ring of $K$. We study ideals of the valuation ring of $L$ as integral representations of the Galois group ${\rm Gal}(L/K)$. Assuming $K$ is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an ${\cal O}$-order in the group algebra $K[{\rm Gal}(l/K)]$. We obtain several general and also explicit new results.
LA - eng
KW - ideals; valuation ring; integral representations; Galois group; factorisability
UR - http://eudml.org/doc/74923
ER -

References

top
  1. [1] A.-M. BERGÉ, Arithmétique d'une extension à groupe d'inertie cyclique, Ann. Inst. Fourier, 28, 4 (1978), 17-44. Zbl0377.12009MR80a:12012
  2. [2] A.-M. BERGÉ, A propos du genre de l'anneau des entiers d'une extension, Publications Math. Sc. Besançon, (1979-1980), 1-9. Zbl0472.12006MR85h:11063
  3. [3] D. BURNS, Factorisability, group lattices and Galois module structure, J. of Algebra, 134 (1990), 257-270. Zbl0734.11064
  4. [4] D. BURNS, Canonical factorisability and a variant of Martinet's conjecture, to appear in J. London Math. Soc., (1991). Zbl0751.11053MR92m:11128
  5. [5] S. U. CHASE and F. DESTREMPES, Factorizability, Grothendieck groups and Galois module structure, preprint, 1989. 
  6. [6] J. W. S. CASSELS and A. FRÖHLICH (eds), Algebraic Number Theory, Proc. Brighton Symp., 1965, Academic Press, London, 1967. Zbl0153.07403
  7. [7] Ph. CASSOU-NOGUÈS and M. J. TAYLOR, Elliptic functions and rings of integers, Progress in Mathematics, Volume 66, Birkhäuser Boston-Basel-Stuttgart, 1987. Zbl0608.12013MR88g:11082
  8. [8] B. EREZ, A survey of recent work on the square root of the inverse different, Proceedings of the Journées Arithmétique 1989 at Luminy. Zbl0752.11048
  9. [9] M.-J. FERTON, Sur les idéaux d'une extension cyclique de degré premier d'un corps local, C.R. Acad. Sc. Paris, 276 Série A (1973), 1483-1486. Zbl0268.12006MR48 #11059
  10. [10] J.-M. FONTAINE, Groupes de ramification et représentations d'Artin, Ann. Scient. Éc. Norm. Sup., 4e série, 4 (1971), 337-392. Zbl0232.12006MR44 #6648
  11. [11] A. FRÖHLICH, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford, 16 (1965), 193-232. Zbl0192.14002MR35 #1583
  12. [12] A. FRÖHLICH, Module defect and factorisability, Illinois J. Math., 32, 3 (1988), 407-421. Zbl0664.12007MR89g:11108
  13. [13] A. FRÖHLICH, L-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure), J. reine und angew. Math., 397 (1989), 42-99. Zbl0693.12012MR90g:11157
  14. [14] F. KAWAMOTO, On normal integral bases of local fields, J. of Algebra, 98 (1986), 197-199. Zbl0595.12007MR87e:11137
  15. [15] H. W. LEOPOLDT, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine und angew. Math., 201 (1959), 119-149. Zbl0098.03403MR21 #7195
  16. [16] A. NELSON, Monomial representations and Galois module structure, Ph. D. Thesis, King's College, University of London, 1979. 
  17. [17] I. REINER, Maximal Orders, Academic Press, London, 1975. Zbl0305.16001MR52 #13910
  18. [18] J.-P. SERRE, Corps Locaux, Hermann, Paris, 1962. Zbl0137.02601MR27 #133
  19. [19] D. SOLOMON, Iwasawa theory, factorisability and the Galois module structure of units, to appear. Zbl0759.11039
  20. [20] R. G. SWAN, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578. Zbl0104.25102MR25 #2131
  21. [21] S. ULLOM, Normal bases in Galois extensions of number fields, Nagoya J., 34 (1969), 153-167. Zbl0175.04502MR39 #1436
  22. [22] S. ULLOM, Galois cohomology of Ambiguous Ideals, J. Number Theory, 1 (1969), 11-15. Zbl0176.33501MR38 #5755
  23. [23] S. M. J. WILSON, Extensions with identical wild ramification, Sém. de Théorie des Nombres, Université de Bordeaux I, (1980-1981). Zbl0491.12008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.