Factorisability and wildly ramified Galois extensions
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 2, page 393-430
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBurns, David J.. "Factorisability and wildly ramified Galois extensions." Annales de l'institut Fourier 41.2 (1991): 393-430. <http://eudml.org/doc/74923>.
@article{Burns1991,
abstract = {Let $L/K$ be an abelian extension of $p$-adic fields, and let $\{\cal O\}$ denote the valuation ring of $K$. We study ideals of the valuation ring of $L$ as integral representations of the Galois group $\{\rm Gal\}(L/K)$. Assuming $K$ is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an $\{\cal O\}$-order in the group algebra $K[\{\rm Gal\}(l/K)]$. We obtain several general and also explicit new results.},
author = {Burns, David J.},
journal = {Annales de l'institut Fourier},
keywords = {ideals; valuation ring; integral representations; Galois group; factorisability},
language = {eng},
number = {2},
pages = {393-430},
publisher = {Association des Annales de l'Institut Fourier},
title = {Factorisability and wildly ramified Galois extensions},
url = {http://eudml.org/doc/74923},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Burns, David J.
TI - Factorisability and wildly ramified Galois extensions
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 393
EP - 430
AB - Let $L/K$ be an abelian extension of $p$-adic fields, and let ${\cal O}$ denote the valuation ring of $K$. We study ideals of the valuation ring of $L$ as integral representations of the Galois group ${\rm Gal}(L/K)$. Assuming $K$ is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an ${\cal O}$-order in the group algebra $K[{\rm Gal}(l/K)]$. We obtain several general and also explicit new results.
LA - eng
KW - ideals; valuation ring; integral representations; Galois group; factorisability
UR - http://eudml.org/doc/74923
ER -
References
top- [1] A.-M. BERGÉ, Arithmétique d'une extension à groupe d'inertie cyclique, Ann. Inst. Fourier, 28, 4 (1978), 17-44. Zbl0377.12009MR80a:12012
- [2] A.-M. BERGÉ, A propos du genre de l'anneau des entiers d'une extension, Publications Math. Sc. Besançon, (1979-1980), 1-9. Zbl0472.12006MR85h:11063
- [3] D. BURNS, Factorisability, group lattices and Galois module structure, J. of Algebra, 134 (1990), 257-270. Zbl0734.11064
- [4] D. BURNS, Canonical factorisability and a variant of Martinet's conjecture, to appear in J. London Math. Soc., (1991). Zbl0751.11053MR92m:11128
- [5] S. U. CHASE and F. DESTREMPES, Factorizability, Grothendieck groups and Galois module structure, preprint, 1989.
- [6] J. W. S. CASSELS and A. FRÖHLICH (eds), Algebraic Number Theory, Proc. Brighton Symp., 1965, Academic Press, London, 1967. Zbl0153.07403
- [7] Ph. CASSOU-NOGUÈS and M. J. TAYLOR, Elliptic functions and rings of integers, Progress in Mathematics, Volume 66, Birkhäuser Boston-Basel-Stuttgart, 1987. Zbl0608.12013MR88g:11082
- [8] B. EREZ, A survey of recent work on the square root of the inverse different, Proceedings of the Journées Arithmétique 1989 at Luminy. Zbl0752.11048
- [9] M.-J. FERTON, Sur les idéaux d'une extension cyclique de degré premier d'un corps local, C.R. Acad. Sc. Paris, 276 Série A (1973), 1483-1486. Zbl0268.12006MR48 #11059
- [10] J.-M. FONTAINE, Groupes de ramification et représentations d'Artin, Ann. Scient. Éc. Norm. Sup., 4e série, 4 (1971), 337-392. Zbl0232.12006MR44 #6648
- [11] A. FRÖHLICH, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford, 16 (1965), 193-232. Zbl0192.14002MR35 #1583
- [12] A. FRÖHLICH, Module defect and factorisability, Illinois J. Math., 32, 3 (1988), 407-421. Zbl0664.12007MR89g:11108
- [13] A. FRÖHLICH, L-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure), J. reine und angew. Math., 397 (1989), 42-99. Zbl0693.12012MR90g:11157
- [14] F. KAWAMOTO, On normal integral bases of local fields, J. of Algebra, 98 (1986), 197-199. Zbl0595.12007MR87e:11137
- [15] H. W. LEOPOLDT, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine und angew. Math., 201 (1959), 119-149. Zbl0098.03403MR21 #7195
- [16] A. NELSON, Monomial representations and Galois module structure, Ph. D. Thesis, King's College, University of London, 1979.
- [17] I. REINER, Maximal Orders, Academic Press, London, 1975. Zbl0305.16001MR52 #13910
- [18] J.-P. SERRE, Corps Locaux, Hermann, Paris, 1962. Zbl0137.02601MR27 #133
- [19] D. SOLOMON, Iwasawa theory, factorisability and the Galois module structure of units, to appear. Zbl0759.11039
- [20] R. G. SWAN, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578. Zbl0104.25102MR25 #2131
- [21] S. ULLOM, Normal bases in Galois extensions of number fields, Nagoya J., 34 (1969), 153-167. Zbl0175.04502MR39 #1436
- [22] S. ULLOM, Galois cohomology of Ambiguous Ideals, J. Number Theory, 1 (1969), 11-15. Zbl0176.33501MR38 #5755
- [23] S. M. J. WILSON, Extensions with identical wild ramification, Sém. de Théorie des Nombres, Université de Bordeaux I, (1980-1981). Zbl0491.12008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.