Homotopy Lie algebras and fundamental groups via deformation theory

Martin Markl; Stefan Papadima

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 4, page 905-935
  • ISSN: 0373-0956

Abstract

top
We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as π * Ω S (the homotopy Lie algebra) or gr * π 1 S (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.

How to cite

top

Markl, Martin, and Papadima, Stefan. "Homotopy Lie algebras and fundamental groups via deformation theory." Annales de l'institut Fourier 42.4 (1992): 905-935. <http://eudml.org/doc/74979>.

@article{Markl1992,
abstract = {We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as $\pi _ *\Omega S$ (the homotopy Lie algebra) or $\operatorname\{gr\}^*\pi _ 1S$ (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.},
author = {Markl, Martin, Papadima, Stefan},
journal = {Annales de l'institut Fourier},
keywords = {homotopy groups; links; homotopy Lie algebra; fundamental group; rigidity},
language = {eng},
number = {4},
pages = {905-935},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homotopy Lie algebras and fundamental groups via deformation theory},
url = {http://eudml.org/doc/74979},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Markl, Martin
AU - Papadima, Stefan
TI - Homotopy Lie algebras and fundamental groups via deformation theory
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 905
EP - 935
AB - We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as $\pi _ *\Omega S$ (the homotopy Lie algebra) or $\operatorname{gr}^*\pi _ 1S$ (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.
LA - eng
KW - homotopy groups; links; homotopy Lie algebra; fundamental group; rigidity
UR - http://eudml.org/doc/74979
ER -

References

top
  1. [1] D. ANICK, Non-commutative graded algebras and their Hilbert series, J. of Algebra, (1)78 (1982), 120-140. Zbl0502.16002
  2. [2] D. ANICK, Connections between Yoneda and Pontrjagin algebras, Lect. Notes in Math. 1051, Springer-Verlag, 1984, pp. 331-350. Zbl0542.57035MR87e:55025
  3. [3] D. ANICK, Inert sets and the Lie algebra associated to a group, Journ. of Algebra, 111-1 (1987), 154-165. Zbl0635.20015MR89d:20031
  4. [4] I.K. BABENKO, On analytic properties of the Poincaré series of loop spaces, Matem. Zametki, 27 (1980), 751-765, in Russian ; English transl. in Math. Notes 27 (1980). 
  5. [5] B. BERCEANU, şt. PAPADIMA, Cohomologically generic 2-complexes and 3-dimensional Poincaré complexes, preprint. Zbl0791.57007
  6. [6] K.-T. CHEN, Iterated integral of differential forms and loop space homology, Ann. of Mathematics, (2)97 (1973), 217-246. Zbl0227.58003
  7. [7] K.-T. CHEN, Differential forms and homotopy groups, J. of Differential Geometry, 6 (1971), 231-246. Zbl0229.58002MR52 #1755
  8. [8] K.-T. CHEN, Commutator calculs and link invariants, Proc. Amer. Math. Soc., 3 (1952), 44-55. Zbl0049.40402MR13,721d
  9. [9] B. CENKL, R. PORTER, Malcev's completion of a group and differential forms, J. of Differential Geometry, 15 (1980), 531-542. Zbl0491.20033MR82k:55013
  10. [10] Y. FÉLIX, Dénombrement des types de k-homotopie. Théorie de la déformation, Bull. Soc. Math. France, (3)108 (1980). Zbl0452.55005MR82i:55011
  11. [11] Y. FÉLIX, S. HALPERIN, Rational LS category and its applications, Trans. Amer. Math. Society, 273 (1982), 1-38. Zbl0508.55004MR84h:55011
  12. [12] Y. FÉLIX, J.-C. THOMAS, Sur la structure des espaces de LS catégorie deux, Illinois J. of Math., (4)30 (1986), 574-593. Zbl0585.55010MR87k:55016
  13. [13] P.A. GRIFFITHS, J.W. MORGAN, Rational homotopy theory and differential forms, Progress in Math. 16, Birkhäuser, 1981. Zbl0474.55001MR82m:55014
  14. [14] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, curvature and cohomology, vol. III, Academic Press, 1976. Zbl0372.57001MR53 #4110
  15. [15] S. HALPERIN, J.-M. LEMAIRE, Suites inertes dans les algèbres de Lie graduées, Math. Scand., 61 (1987), 39-67. Zbl0655.55004MR89e:55022
  16. [16] P.J. HILTON, U. STAMBACH, A course in homological algebra, Graduate texts in Mathematics 4, Springer-Verlag, 1971. Zbl0238.18006MR49 #10751
  17. [17] S. HALPERIN, J.D. STASHEFF, Obstructions to homotopy equivalences, Advances in Math., 32 (1979), 233-279. Zbl0408.55009MR80j:55016
  18. [18] S. KOJIMA, Nilpotent completions and Lie rings associated to link groups, Comment. Math. Helv., 58 (1983) 115-134. Zbl0528.57004MR85b:57008
  19. [19] T. KOHNO, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math., 82 (1985), 57-75. Zbl0574.55009MR87c:32015a
  20. [20] J.P. LABUTE, The determination of the Lie algebra associated to the lower central series of a group, Trans. Amer. Math. Society, (1) 288 (1985), 51-57. Zbl0576.20022MR86b:20049
  21. [21] J.P. LABUTE, The Lie algebra associated to the lower central series of a link group and Murasugi's conjecture, Proc. Amer. Math. Soc., 109,4 (1990), 951-956. Zbl0696.20035MR90k:20065
  22. [22] C. LÖFWALL, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions, Proc. Stockholm 1983, Lect. Notes in Math. 1183, Springer-Verlag, 1986, pp. 291-338. Zbl0595.16020
  23. [23] J.-M. LEMAIRE, F. SIGRIST, Dénombrement des types d'homotopie rationnelle, C. R. Acad. Sci. Paris, 287 (1978), 109-112. Zbl0382.55005MR80b:55009
  24. [24] M. MARKL, şt. PAPADIMA, Geometric decompositions, algebraic models and rigidity theorems, Journ. of Pure and Appl. Algebra, 71 (1991), 53-73. Zbl0728.55005MR92f:55016
  25. [25] S.B. PRIDDY, Koszul resolutions, Trans. Amer. Math. Society, 152 (1970), 39-60. Zbl0261.18016MR42 #346
  26. [26] şT. PAPADIMA, The rational homotopy of Thom spaces and the smoothing of homology classes, Comment. Math. Helv., 60 (1985), 601-614. Zbl0592.57025MR87e:57030
  27. [27] D. QUILLEN, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
  28. [28] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. IHES, 47 (1977), 269-331. Zbl0374.57002MR58 #31119
  29. [29] J.-P. SERRE, Lie algebras and Lie groups, Benjamin, 1965. Zbl0132.27803MR36 #1582
  30. [30] J.D. STASHEFF, Rational Poincaré duality spaces, Illinois J. of Math., 27 (1983), 104-109. Zbl0488.55010MR85c:55012
  31. [31] D. TANRÉ, Homotopie rationnelle. Modèles de Chen, Quillen, Sullivan, Lect. Notes in Mathem. 1025, Springer-Verlag, 1983. Zbl0539.55001
  32. [32] D. TANRÉ, Cohomologie de Harrison et type d'homotopie rationnelle, Algebra, algebraic topology and their interactions, Proc. Stockholm 1983, Lect. Notes in Math. 1183, Springer-Verlag, 1986, pp. 361-370. Zbl0594.55013MR87m:55015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.