Homotopy Lie algebras and fundamental groups via deformation theory
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 4, page 905-935
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMarkl, Martin, and Papadima, Stefan. "Homotopy Lie algebras and fundamental groups via deformation theory." Annales de l'institut Fourier 42.4 (1992): 905-935. <http://eudml.org/doc/74979>.
@article{Markl1992,
abstract = {We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as $\pi _ *\Omega S$ (the homotopy Lie algebra) or $\operatorname\{gr\}^*\pi _ 1S$ (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.},
author = {Markl, Martin, Papadima, Stefan},
journal = {Annales de l'institut Fourier},
keywords = {homotopy groups; links; homotopy Lie algebra; fundamental group; rigidity},
language = {eng},
number = {4},
pages = {905-935},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homotopy Lie algebras and fundamental groups via deformation theory},
url = {http://eudml.org/doc/74979},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Markl, Martin
AU - Papadima, Stefan
TI - Homotopy Lie algebras and fundamental groups via deformation theory
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 905
EP - 935
AB - We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as $\pi _ *\Omega S$ (the homotopy Lie algebra) or $\operatorname{gr}^*\pi _ 1S$ (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.
LA - eng
KW - homotopy groups; links; homotopy Lie algebra; fundamental group; rigidity
UR - http://eudml.org/doc/74979
ER -
References
top- [1] D. ANICK, Non-commutative graded algebras and their Hilbert series, J. of Algebra, (1)78 (1982), 120-140. Zbl0502.16002
- [2] D. ANICK, Connections between Yoneda and Pontrjagin algebras, Lect. Notes in Math. 1051, Springer-Verlag, 1984, pp. 331-350. Zbl0542.57035MR87e:55025
- [3] D. ANICK, Inert sets and the Lie algebra associated to a group, Journ. of Algebra, 111-1 (1987), 154-165. Zbl0635.20015MR89d:20031
- [4] I.K. BABENKO, On analytic properties of the Poincaré series of loop spaces, Matem. Zametki, 27 (1980), 751-765, in Russian ; English transl. in Math. Notes 27 (1980).
- [5] B. BERCEANU, şt. PAPADIMA, Cohomologically generic 2-complexes and 3-dimensional Poincaré complexes, preprint. Zbl0791.57007
- [6] K.-T. CHEN, Iterated integral of differential forms and loop space homology, Ann. of Mathematics, (2)97 (1973), 217-246. Zbl0227.58003
- [7] K.-T. CHEN, Differential forms and homotopy groups, J. of Differential Geometry, 6 (1971), 231-246. Zbl0229.58002MR52 #1755
- [8] K.-T. CHEN, Commutator calculs and link invariants, Proc. Amer. Math. Soc., 3 (1952), 44-55. Zbl0049.40402MR13,721d
- [9] B. CENKL, R. PORTER, Malcev's completion of a group and differential forms, J. of Differential Geometry, 15 (1980), 531-542. Zbl0491.20033MR82k:55013
- [10] Y. FÉLIX, Dénombrement des types de k-homotopie. Théorie de la déformation, Bull. Soc. Math. France, (3)108 (1980). Zbl0452.55005MR82i:55011
- [11] Y. FÉLIX, S. HALPERIN, Rational LS category and its applications, Trans. Amer. Math. Society, 273 (1982), 1-38. Zbl0508.55004MR84h:55011
- [12] Y. FÉLIX, J.-C. THOMAS, Sur la structure des espaces de LS catégorie deux, Illinois J. of Math., (4)30 (1986), 574-593. Zbl0585.55010MR87k:55016
- [13] P.A. GRIFFITHS, J.W. MORGAN, Rational homotopy theory and differential forms, Progress in Math. 16, Birkhäuser, 1981. Zbl0474.55001MR82m:55014
- [14] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, curvature and cohomology, vol. III, Academic Press, 1976. Zbl0372.57001MR53 #4110
- [15] S. HALPERIN, J.-M. LEMAIRE, Suites inertes dans les algèbres de Lie graduées, Math. Scand., 61 (1987), 39-67. Zbl0655.55004MR89e:55022
- [16] P.J. HILTON, U. STAMBACH, A course in homological algebra, Graduate texts in Mathematics 4, Springer-Verlag, 1971. Zbl0238.18006MR49 #10751
- [17] S. HALPERIN, J.D. STASHEFF, Obstructions to homotopy equivalences, Advances in Math., 32 (1979), 233-279. Zbl0408.55009MR80j:55016
- [18] S. KOJIMA, Nilpotent completions and Lie rings associated to link groups, Comment. Math. Helv., 58 (1983) 115-134. Zbl0528.57004MR85b:57008
- [19] T. KOHNO, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math., 82 (1985), 57-75. Zbl0574.55009MR87c:32015a
- [20] J.P. LABUTE, The determination of the Lie algebra associated to the lower central series of a group, Trans. Amer. Math. Society, (1) 288 (1985), 51-57. Zbl0576.20022MR86b:20049
- [21] J.P. LABUTE, The Lie algebra associated to the lower central series of a link group and Murasugi's conjecture, Proc. Amer. Math. Soc., 109,4 (1990), 951-956. Zbl0696.20035MR90k:20065
- [22] C. LÖFWALL, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions, Proc. Stockholm 1983, Lect. Notes in Math. 1183, Springer-Verlag, 1986, pp. 291-338. Zbl0595.16020
- [23] J.-M. LEMAIRE, F. SIGRIST, Dénombrement des types d'homotopie rationnelle, C. R. Acad. Sci. Paris, 287 (1978), 109-112. Zbl0382.55005MR80b:55009
- [24] M. MARKL, şt. PAPADIMA, Geometric decompositions, algebraic models and rigidity theorems, Journ. of Pure and Appl. Algebra, 71 (1991), 53-73. Zbl0728.55005MR92f:55016
- [25] S.B. PRIDDY, Koszul resolutions, Trans. Amer. Math. Society, 152 (1970), 39-60. Zbl0261.18016MR42 #346
- [26] şT. PAPADIMA, The rational homotopy of Thom spaces and the smoothing of homology classes, Comment. Math. Helv., 60 (1985), 601-614. Zbl0592.57025MR87e:57030
- [27] D. QUILLEN, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
- [28] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. IHES, 47 (1977), 269-331. Zbl0374.57002MR58 #31119
- [29] J.-P. SERRE, Lie algebras and Lie groups, Benjamin, 1965. Zbl0132.27803MR36 #1582
- [30] J.D. STASHEFF, Rational Poincaré duality spaces, Illinois J. of Math., 27 (1983), 104-109. Zbl0488.55010MR85c:55012
- [31] D. TANRÉ, Homotopie rationnelle. Modèles de Chen, Quillen, Sullivan, Lect. Notes in Mathem. 1025, Springer-Verlag, 1983. Zbl0539.55001
- [32] D. TANRÉ, Cohomologie de Harrison et type d'homotopie rationnelle, Algebra, algebraic topology and their interactions, Proc. Stockholm 1983, Lect. Notes in Math. 1183, Springer-Verlag, 1986, pp. 361-370. Zbl0594.55013MR87m:55015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.