Dénombrement des types de K-homotopie. Théorie de la déformation

Y. Félix

Mémoires de la Société Mathématique de France (1980)

  • Volume: 3, page 1-49
  • ISSN: 0249-633X

How to cite

top

Félix, Y.. "Dénombrement des types de K-homotopie. Théorie de la déformation." Mémoires de la Société Mathématique de France 3 (1980): 1-49. <http://eudml.org/doc/94826>.

@article{Félix1980,
author = {Félix, Y.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {K-homotopy; deformation; rigidity; rational homotopy types that have a given cohomology algebra; cohomology algebras which have a unique rational homotopy type; differential graded commutative algebra; algebraic variety on which an algebraic group acts; Koszul-Sullivan minimal model of differential filtered graded algebra; deforming the differential; obstructions to rigidity; obstructions to uniqueness of homotopy type; upper semi-continuity of homotopy invariants},
language = {fre},
pages = {1-49},
publisher = {Société mathématique de France},
title = {Dénombrement des types de K-homotopie. Théorie de la déformation},
url = {http://eudml.org/doc/94826},
volume = {3},
year = {1980},
}

TY - JOUR
AU - Félix, Y.
TI - Dénombrement des types de K-homotopie. Théorie de la déformation
JO - Mémoires de la Société Mathématique de France
PY - 1980
PB - Société mathématique de France
VL - 3
SP - 1
EP - 49
LA - fre
KW - K-homotopy; deformation; rigidity; rational homotopy types that have a given cohomology algebra; cohomology algebras which have a unique rational homotopy type; differential graded commutative algebra; algebraic variety on which an algebraic group acts; Koszul-Sullivan minimal model of differential filtered graded algebra; deforming the differential; obstructions to rigidity; obstructions to uniqueness of homotopy type; upper semi-continuity of homotopy invariants
UR - http://eudml.org/doc/94826
ER -

References

top
  1. [1] Body R. and Douglas R.Homotopy types within a rational homotopy type [topology 13 (1974), 209-214]. Zbl0299.55008MR50 #5787
  2. [2] Bousfield A. and Gugenheim V.On P.L. de Rham theory and rational homotopy type (memoirs of the A.M.S. n° 179 (1975)). Zbl0338.55008
  3. [3] Cartan H.La transgression dans un groupe de Lie et dans un espace fibré principal (Colloque de topologie, Bruxelles (1950)). Zbl0045.30701
  4. [4] Félix Y.Polynôme de Poincaré de l'espace des lacets d'un espace coformel simplement connexe (publ. internes, Lille (1979)). 
  5. [5] Félix Y.Classification homotopique des espaces rationnels à cohomologie donnée (thèse, Louvain-la-Neuve (1979)). Zbl0447.55010MR81m:55012
  6. [6] Félix Y.Desoente galoisienne des types d'homotopie rationnelle (rapport sém. math. pures, Louvain-la-Neuve (1979)). Zbl0453.55011
  7. [7] Flanigan F.J.Algebraic geography : varieties of structure constants (Pac. J. Math. 27 (1) (1968) 71-79). Zbl0165.35001MR38 #5854
  8. [8] Friedlander E., Griffits P.A. and Morgan J.Homotopy theory and differential forms (Seminario di Geometria, (1972) Firenze). 
  9. [9] Gerstenhaber N.On the deformation of rings and algebras (Ann. of Math. 79 (1964) 59-103). Zbl0123.03101MR30 #2034
  10. [10] Halperin S. and Stasheff J.Obstructions to homotopy equivalences (preprint (1976)). 
  11. [11] Lehmann D.Théorie homotopique des formes différentielles (Astérisque 45 (1977)). Zbl0367.55008MR58 #7616
  12. [12] Lemaire J.M. and Sigrist F.Dénombrement des types d'homotopie rationnelle (C.R. Acad. Sci. Paris 287A, 109-112 (1973)). Zbl0382.55005MR80b:55009
  13. [13] May J.P.Matrix Massey products (J. of Algebra 12 (1969) 533-568). Zbl0192.34302MR39 #289
  14. [14] Nijenhuis A. and Richardson J.Cohomology and deformation in graded Lie algebras (Bull. A.M.S. 72 (1966) 1-29). Zbl0136.30502MR33 #4190
  15. [15] Quillen D.Rational homotopy theory (Ann. of Math. 90 (1969) 205-295). Zbl0191.53702MR41 #2678
  16. [16] Stasheff J.Rational homotopy-obstruction and perturbation theory (Lect. Notes in Math. n° 673 (1978) 7-31). Zbl0391.55008MR80d:55015
  17. [17] Sullivan D.Infinitesimal computations in topology (Publ. de l'I.H.E.S. 47 (1978) 269-331). Zbl0374.57002MR58 #31119
  18. [18] Vergne M.Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes (Bull. Soc. Math. France 98 (1970) 81-116). Zbl0244.17011MR44 #6797
  19. [19] Vigué M.Quelques problèmes d'homotopie rationnelle (thèse (1978) Lille). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.