Dénombrement des types de K-homotopie. Théorie de la déformation
Mémoires de la Société Mathématique de France (1980)
- Volume: 3, page 1-49
- ISSN: 0249-633X
Access Full Article
topHow to cite
topFélix, Y.. "Dénombrement des types de K-homotopie. Théorie de la déformation." Mémoires de la Société Mathématique de France 3 (1980): 1-49. <http://eudml.org/doc/94826>.
@article{Félix1980,
author = {Félix, Y.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {K-homotopy; deformation; rigidity; rational homotopy types that have a given cohomology algebra; cohomology algebras which have a unique rational homotopy type; differential graded commutative algebra; algebraic variety on which an algebraic group acts; Koszul-Sullivan minimal model of differential filtered graded algebra; deforming the differential; obstructions to rigidity; obstructions to uniqueness of homotopy type; upper semi-continuity of homotopy invariants},
language = {fre},
pages = {1-49},
publisher = {Société mathématique de France},
title = {Dénombrement des types de K-homotopie. Théorie de la déformation},
url = {http://eudml.org/doc/94826},
volume = {3},
year = {1980},
}
TY - JOUR
AU - Félix, Y.
TI - Dénombrement des types de K-homotopie. Théorie de la déformation
JO - Mémoires de la Société Mathématique de France
PY - 1980
PB - Société mathématique de France
VL - 3
SP - 1
EP - 49
LA - fre
KW - K-homotopy; deformation; rigidity; rational homotopy types that have a given cohomology algebra; cohomology algebras which have a unique rational homotopy type; differential graded commutative algebra; algebraic variety on which an algebraic group acts; Koszul-Sullivan minimal model of differential filtered graded algebra; deforming the differential; obstructions to rigidity; obstructions to uniqueness of homotopy type; upper semi-continuity of homotopy invariants
UR - http://eudml.org/doc/94826
ER -
References
top- [1] Body R. and Douglas R.Homotopy types within a rational homotopy type [topology 13 (1974), 209-214]. Zbl0299.55008MR50 #5787
- [2] Bousfield A. and Gugenheim V.On P.L. de Rham theory and rational homotopy type (memoirs of the A.M.S. n° 179 (1975)). Zbl0338.55008
- [3] Cartan H.La transgression dans un groupe de Lie et dans un espace fibré principal (Colloque de topologie, Bruxelles (1950)). Zbl0045.30701
- [4] Félix Y.Polynôme de Poincaré de l'espace des lacets d'un espace coformel simplement connexe (publ. internes, Lille (1979)).
- [5] Félix Y.Classification homotopique des espaces rationnels à cohomologie donnée (thèse, Louvain-la-Neuve (1979)). Zbl0447.55010MR81m:55012
- [6] Félix Y.Desoente galoisienne des types d'homotopie rationnelle (rapport sém. math. pures, Louvain-la-Neuve (1979)). Zbl0453.55011
- [7] Flanigan F.J.Algebraic geography : varieties of structure constants (Pac. J. Math. 27 (1) (1968) 71-79). Zbl0165.35001MR38 #5854
- [8] Friedlander E., Griffits P.A. and Morgan J.Homotopy theory and differential forms (Seminario di Geometria, (1972) Firenze).
- [9] Gerstenhaber N.On the deformation of rings and algebras (Ann. of Math. 79 (1964) 59-103). Zbl0123.03101MR30 #2034
- [10] Halperin S. and Stasheff J.Obstructions to homotopy equivalences (preprint (1976)).
- [11] Lehmann D.Théorie homotopique des formes différentielles (Astérisque 45 (1977)). Zbl0367.55008MR58 #7616
- [12] Lemaire J.M. and Sigrist F.Dénombrement des types d'homotopie rationnelle (C.R. Acad. Sci. Paris 287A, 109-112 (1973)). Zbl0382.55005MR80b:55009
- [13] May J.P.Matrix Massey products (J. of Algebra 12 (1969) 533-568). Zbl0192.34302MR39 #289
- [14] Nijenhuis A. and Richardson J.Cohomology and deformation in graded Lie algebras (Bull. A.M.S. 72 (1966) 1-29). Zbl0136.30502MR33 #4190
- [15] Quillen D.Rational homotopy theory (Ann. of Math. 90 (1969) 205-295). Zbl0191.53702MR41 #2678
- [16] Stasheff J.Rational homotopy-obstruction and perturbation theory (Lect. Notes in Math. n° 673 (1978) 7-31). Zbl0391.55008MR80d:55015
- [17] Sullivan D.Infinitesimal computations in topology (Publ. de l'I.H.E.S. 47 (1978) 269-331). Zbl0374.57002MR58 #31119
- [18] Vergne M.Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes (Bull. Soc. Math. France 98 (1970) 81-116). Zbl0244.17011MR44 #6797
- [19] Vigué M.Quelques problèmes d'homotopie rationnelle (thèse (1978) Lille).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.