Infinitesimal conjugacies and Weil-Petersson metric
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 1, page 279-299
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFathi, Albert, and Flaminio, L.. "Infinitesimal conjugacies and Weil-Petersson metric." Annales de l'institut Fourier 43.1 (1993): 279-299. <http://eudml.org/doc/74993>.
@article{Fathi1993,
abstract = {We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.},
author = {Fathi, Albert, Flaminio, L.},
journal = {Annales de l'institut Fourier},
keywords = {Teichmüller; Weil-Petersson metric; deformations; compact Riemannian manifolds of negative curvature; geodesic flows},
language = {eng},
number = {1},
pages = {279-299},
publisher = {Association des Annales de l'Institut Fourier},
title = {Infinitesimal conjugacies and Weil-Petersson metric},
url = {http://eudml.org/doc/74993},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Fathi, Albert
AU - Flaminio, L.
TI - Infinitesimal conjugacies and Weil-Petersson metric
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 1
SP - 279
EP - 299
AB - We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.
LA - eng
KW - Teichmüller; Weil-Petersson metric; deformations; compact Riemannian manifolds of negative curvature; geodesic flows
UR - http://eudml.org/doc/74993
ER -
References
top- [An] D. ANOSOV, Geodesic flows on closed Riemannian manifolds with negative sectional curvature, english translation, Proc. Steklov Inst. Math., 90 (1967). Zbl0176.19101MR36 #7157
- [Bo] F. BONAHON, Bouts de variétés hyperboliques de dimension 3, Ann. of Math., 124 (1986), 71-158. Zbl0671.57008MR88c:57013
- [CF] C. CROKE & A. FATHI, An inequality between energy and intersection, Bull. London Math. Soc., 22 (1990), 489-494. Zbl0719.53020MR92d:58042
- [FT] A. FISCHER & A. TROMBA, On a purely Riemmanian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Math. Ann., 267 (1984), 311-345. Zbl0518.32015MR85m:58045
- [Gh] E. GHYS, Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynamical Systems, 4 (1984), 67-80. Zbl0527.58030MR86b:58098
- [Gr] M. GROMOV, Three remarks on the geodesic flow, preprint.
- [GK] V. GUILLEMIN & D. KAZHDAN, Some inverse spectral results for negatively curved 2-manifolds, Topology, 19 (1980), 301-312. Zbl0465.58027MR81j:58082
- [Kl] W. KLINGENBERG, Riemannian Geometry, Walter de Gruyter, Berlin, New York, 1982. Zbl0495.53036MR84j:53001
- [LM] R. de la LLAVE & R. MORIYON, Invariants for smooth conjugacy of hyperbolic dynamical systems IV, Commun. Math. Phys., 116-4 (1988), 185-192. Zbl0673.58038MR90h:58064
- [LMM] R. de la LLAVE, J. M. MARCO & R. MORIYON, Canonical perturbation theory of Anosov systems and regularity results for Livsic cohomology equation, Ann. of Math., 123 (1986), 537-611. Zbl0603.58016MR88h:58091
- [La] S. LANG, SL2 (R), Graduate Texts in Mathematics 105, Springer-Verlag, Heidelberg, New York & Tokyo, 1985. Zbl0583.22001
- [Mo] M. MORSE, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-60. Zbl50.0466.04JFM50.0466.04
- [Ta] M. TAYLOR, Noncommutative harmonic analysis, Providence, American Mathematical Society, 1986. Zbl0604.43001MR88a:22021
- [Tr] A. TROMBA, A classical variational approach to Teichmüller theory in “Topics in calculus of variations”, ed. M. Giaquinta, Springer Lecture Notes in Mathematics, 1365, 155-185. Zbl0694.49030MR91a:32029
- [Wo] S. WOLPERT, Thurston's Riemannian metric for Teichmüller space, J. Differential Geom., 23 (1986), 143-174. Zbl0592.53037MR88c:32035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.