Approximations rationnelles de π et quelques autres nombres

Maurice Mignotte

Mémoires de la Société Mathématique de France (1974)

  • Volume: 37, page 121-132
  • ISSN: 0249-633X

How to cite

top

Mignotte, Maurice. "Approximations rationnelles de $\pi $ et quelques autres nombres." Mémoires de la Société Mathématique de France 37 (1974): 121-132. <http://eudml.org/doc/94662>.

@article{Mignotte1974,
author = {Mignotte, Maurice},
journal = {Mémoires de la Société Mathématique de France},
language = {fre},
pages = {121-132},
publisher = {Société mathématique de France},
title = {Approximations rationnelles de $\pi $ et quelques autres nombres},
url = {http://eudml.org/doc/94662},
volume = {37},
year = {1974},
}

TY - JOUR
AU - Mignotte, Maurice
TI - Approximations rationnelles de $\pi $ et quelques autres nombres
JO - Mémoires de la Société Mathématique de France
PY - 1974
PB - Société mathématique de France
VL - 37
SP - 121
EP - 132
LA - fre
UR - http://eudml.org/doc/94662
ER -

References

top
  1. [1] CHOONG K.Y. ; DAYKIN D.E. ; RATHBORNE C.R. — Rational approximations to π. Math. Comp. 25 (1971), pp. 387-392. Zbl0221.10011
  2. [2] MAHLER K. — On the approximation of logarithms of algebraic numbers. Phil. Trans. Royal Soc. of London, A, 245, (1953), pp. 371-398. Zbl0052.04404MR14,624g
  3. [3] MAHLER K. — On the approximation of π. Proc. K. Ned. Akad. Wet. Amsterdam, A, 56 (= Indag. Math. 15) (1953) pp. 29-42. Zbl0053.36105MR14,957a
  4. [4] MAHLER K. — Applications of some formulae by Hermite to the approximation of exponentials and logarithms. Math. Annales, 168 (1967) pp. 200-227. Zbl0144.29201MR34 #5754
  5. [5] ROSSER J.B. and SCHOENFELD L. — Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962) pp. 64-94. Zbl0122.05001MR25 #1139
  6. [6] SCHMIDT W.M. — Approximation to algebraic numbers. Enseign. Math., XVII (1971) pp. 187-253. (= Monographie n° 19 de l'Enseignement Mathématique, Genève 1972). Zbl0226.10033

Citations in EuDML Documents

top
  1. Henri Cohen, Démonstration de l’irrationalité de ζ ( 3 ) (d’après R. Apery)
  2. Georges Rhin, Sur les mesures d'irrationalité de certains nombres transcendants
  3. Masayoshi Hata, Rational approximations to π and some other numbers
  4. Georges Rhin, Carlo Viola, On the irrationality measure of ζ ( 2 )
  5. D. Bertrand, M. Emsalem, F. Gramain, M. Huttner, M. Langevin, M. Laurent, M. Mignotte, J.-C. Moreau, P. Philippon, E. Reyssat, M. Waldschmidt, Les nombres transcendants

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.