Zeros of bounded holomorphic functions in strictly pseudoconvex domains in 2

Jim Arlebrink

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 2, page 437-458
  • ISSN: 0373-0956

Abstract

top
Let D be a bounded strictly pseudoconvex domain in 2 and let X be a positive divisor of D with finite area. We prove that there exists a bounded holomorphic function f such that X is the zero set of f . This result has previously been obtained by Berndtsson in the case where D is the unit ball in 2 .

How to cite

top

Arlebrink, Jim. "Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$." Annales de l'institut Fourier 43.2 (1993): 437-458. <http://eudml.org/doc/75003>.

@article{Arlebrink1993,
abstract = {Let $D$ be a bounded strictly pseudoconvex domain in $\{\Bbb C\}^2$ and let $X$ be a positive divisor of $D$ with finite area. We prove that there exists a bounded holomorphic function $f$ such that $X$ is the zero set of $f$. This result has previously been obtained by Berndtsson in the case where $D$ is the unit ball in $\{\Bbb C\}^2$.},
author = {Arlebrink, Jim},
journal = {Annales de l'institut Fourier},
keywords = {-equation; zero divisor; bounded strictly pseudoconvex domain; bounded holomorphic function},
language = {eng},
number = {2},
pages = {437-458},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zeros of bounded holomorphic functions in strictly pseudoconvex domains in $\{\mathbb \{C\}\}^2$},
url = {http://eudml.org/doc/75003},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Arlebrink, Jim
TI - Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 437
EP - 458
AB - Let $D$ be a bounded strictly pseudoconvex domain in ${\Bbb C}^2$ and let $X$ be a positive divisor of $D$ with finite area. We prove that there exists a bounded holomorphic function $f$ such that $X$ is the zero set of $f$. This result has previously been obtained by Berndtsson in the case where $D$ is the unit ball in ${\Bbb C}^2$.
LA - eng
KW - -equation; zero divisor; bounded strictly pseudoconvex domain; bounded holomorphic function
UR - http://eudml.org/doc/75003
ER -

References

top
  1. [AC] M. ANDERSSON, H. CARLSSON, On Varopoulos' theorem about zero sets of Hp-functions, Bull. Sc. Math., 114 (1990), 463-484. Zbl0725.32005MR91j:32006
  2. [Ar] J. ARLEBRINK, Zeros of bounded holomorphic functions in C2, Preprint Göteborg (1989). 
  3. [Be] B. BERNDTSSON, Integral formulas for the ∂∂-equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann., 249 (1980), 163-176. Zbl0414.31007MR81m:32012
  4. [BA] B. BERNDTSSON, M. ANDERSSON, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-100. Zbl0466.32001MR84j:32003
  5. [Fo] J. E. FORNAESS, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. Zbl0334.32020MR54 #10669
  6. [He1] G. M. HENKIN, Solutions with estimates of the H. Levy and Poincaré-Lelong equations. Constructions of functions of the Nevanlinna class with prescribed zeros in strictly pseudoconvex domains, Soviet Math. Dokl., 16 (1976), 3-13. 
  7. [He2] G. M. HENKIN, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math., Surveys, 32-3 (1977), 59-130. Zbl0382.35038MR56 #12318
  8. [KS] N. KERZMAN, G. STEIN, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), 197-224. Zbl0387.32009MR58 #22676
  9. [Le1] P. LELONG, Fonctionnelles analytiques et fonctions entières (n variables), Presses Univ. Montréal, Montréal, 1968. Zbl0194.38801MR57 #6483
  10. [Le2] P. LELONG, Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, Paris-London-New York, 1968. Zbl0195.11603MR39 #4436
  11. [Sk1] H. SKODA, Diviseurs d'aire bornée dans la boule de C2: réflexions sur un article de B. Berndtsson, Sem. Lelong-Skoda 1978-79, LNM 822, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl0443.32002
  12. [Sk2] H. SKODA, Valeurs au bord pour les solutions de l’opérateur d " et caractérisation de zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104 (1976), 225-299. Zbl0351.31007MR56 #8913
  13. [Ra] R. M. RANGE, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin-Heidelberg-New-York, 1986. Zbl0591.32002MR87i:32001
  14. [Va] N. Th. VAROPOULOS, Zeros of Hp-functions in several variables, Pacific J. Math., 88 (1980), 189-246. Zbl0454.32006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.