Théorie de jauge et symétries des fibrés

D. Brandt; Jean-Claude Hausmann

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 2, page 509-537
  • ISSN: 0373-0956

Abstract

top
Let ξ be a smooth G -principal bundle over a manifold M ( G being a compact Lie group). Given an action of a compact Lie group Γ on M , one asks the question whether it comes from an action on the bundle ξ . In this paper, this question is shown to be essentially equivalent to the existence of fixed points for the naturally induced actions of Γ on various moduli spaces of G -connections on M .

How to cite

top

Brandt, D., and Hausmann, Jean-Claude. "Théorie de jauge et symétries des fibrés." Annales de l'institut Fourier 43.2 (1993): 509-537. <http://eudml.org/doc/75008>.

@article{Brandt1993,
abstract = {Soit $\xi $ un $G$-fibré principal différentiable sur une variété $M$ ($G$ un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact $\Gamma $ sur $M$, on se pose la question de savoir si elle provient d’une action sur le fibré $\xi $. L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de $\Gamma $ que l’on induit naturellement sur divers espaces de modules de $G$-connexions sur $\xi $.},
author = {Brandt, D., Hausmann, Jean-Claude},
journal = {Annales de l'institut Fourier},
keywords = {principal bundles; lifting actions of compact groups; gauge group; fixed point; spaces of connections},
language = {fre},
number = {2},
pages = {509-537},
publisher = {Association des Annales de l'Institut Fourier},
title = {Théorie de jauge et symétries des fibrés},
url = {http://eudml.org/doc/75008},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Brandt, D.
AU - Hausmann, Jean-Claude
TI - Théorie de jauge et symétries des fibrés
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 509
EP - 537
AB - Soit $\xi $ un $G$-fibré principal différentiable sur une variété $M$ ($G$ un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact $\Gamma $ sur $M$, on se pose la question de savoir si elle provient d’une action sur le fibré $\xi $. L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de $\Gamma $ que l’on induit naturellement sur divers espaces de modules de $G$-connexions sur $\xi $.
LA - fre
KW - principal bundles; lifting actions of compact groups; gauge group; fixed point; spaces of connections
UR - http://eudml.org/doc/75008
ER -

References

top
  1. [Bn] K. BROWN, Cohomology of groups, Springer-Verlag, New York, 1982. Zbl0584.20036MR83k:20002
  2. [Do] S. DONALDSON, Connections, cohomology and the intersection forms of 4-manifolds, J. of Differential Geometry, 24 (1986), 275-341. Zbl0635.57007
  3. [FS] R. FINTUSHEL & R. STERN, Definite 4-manifolds, J. of Differential Geometry, 28 (1988), 133-141. Zbl0662.57009MR89i:57006
  4. [HY] A. HATTORI & T. YOSHIDA, Lifting compact actions in fiber bundles, Japan J. of Math., 2 (1976), 13-25. Zbl0346.57014MR57 #1523
  5. [La] Bl. LAWSON, The theory of gauge fields in four dimensions, Regional Conf. series in Math., 58 (AMS 1985). Zbl0597.53001MR87d:58044
  6. [LMS] R. LASHOF & J. MAY & G. SEGAL, Equivariant bundles with abelian structural group, Contemporary Math., Vol 19 (AMS 1983), 167-176. Zbl0526.55020MR85b:55023
  7. [KN] S. KOBAYASHI & K. NOMIZU, Foundations of differential topology, Vol I et II, Interscience, New York, 1969. Zbl0175.48504
  8. [PS] R. PALAIS & T. STUART, The cohomology of differentiable transformation groups, Amer. J. of Math., 83 (1961), 623-644. Zbl0104.17703MR25 #4030
  9. [St] T. STUART, Lifting group actions in fibre bundle, Annals of Math., 74 (1961), 192-198. Zbl0116.40502MR23 #A3798
  10. [VE] van EST, On the algebraic cohomology concepts in Lie groups, Indigat. Math., 18 (1955), I, 225-233 ; II, 286-294. Zbl0067.26202MR17,61b
  11. [Wa] Sh. WANG, Moduli spaces over manifolds with involutions, to appear (Preprint, Michigan State Univ. at East Lansing). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.