Remarks on Holmgren's uniqueness theorem

Lars Hörmander

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 5, page 1223-1251
  • ISSN: 0373-0956

How to cite

top

Hörmander, Lars. "Remarks on Holmgren's uniqueness theorem." Annales de l'institut Fourier 43.5 (1993): 1223-1251. <http://eudml.org/doc/75035>.

@article{Hörmander1993,
author = {Hörmander, Lars},
journal = {Annales de l'institut Fourier},
keywords = {Holmgren's uniqueness theorem; analytic wave front set; conormal set},
language = {eng},
number = {5},
pages = {1223-1251},
publisher = {Association des Annales de l'Institut Fourier},
title = {Remarks on Holmgren's uniqueness theorem},
url = {http://eudml.org/doc/75035},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Hörmander, Lars
TI - Remarks on Holmgren's uniqueness theorem
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 5
SP - 1223
EP - 1251
LA - eng
KW - Holmgren's uniqueness theorem; analytic wave front set; conormal set
UR - http://eudml.org/doc/75035
ER -

References

top
  1. [1] J. BOMAN, Helgason's support theorem for Radon transforms - a new proof and a generalization, in Mathematical methods in tomography, Springer Lecture Notes in Math., vol. 1497, 1-5, 1991. Zbl0772.44003MR1178765
  2. [2] J. BOMAN, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, 315 (1992), 1231-1234. Zbl0785.46039MR93j:46044
  3. [3] J. BOMAN, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemporary Mathematics, 140 (1992), 23-30. Zbl0791.44003MR93k:44001
  4. [4] T. CARLEMAN, Les fonctions quasianalytiques, Gauthier-Villars, Paris, 1926. JFM52.0255.02
  5. [5] E. HOLMGREN, Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl, Vetenskaps-Akad. Förh., 58 (1901), 91-103. JFM32.0357.02
  6. [6] L. HÖRMANDER, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704. Zbl0226.35019MR45 #3917
  7. [7] L. HÖRMANDER, The analysis of linear partial differential operators I, IV, Springer Verlag, 1983, 1985. Zbl0612.35001
  8. [8] L. HÖRMANDER, A uniqueness theorem for second order hyperbolic differential equations, Comm. Partial Diff. Equations, 17 (1992), 699-714. Zbl0815.35063MR93h:35116
  9. [9] F. JOHN, On linear differential equations with analytic coefficients. Unique continuation of data, Comm. Pure Appl. Math., 2 (1949), 209-253. Zbl0035.34601MR12,185d
  10. [10] A. KANEKO, Introduction to hyperfunctions, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988. Zbl0687.46027
  11. [11] T. KAWAI, On the theory of Fourier hyperfunctions and its application to partial differential equations with constant coefficients, J. Fac. Sci. Tokyo, 17 (1970), 467-517. Zbl0212.46101MR45 #7252
  12. [12] L. ROBBIANO, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. Partial Diff. Equations, 16 (1991), 789-800. Zbl0735.35086MR92j:35002
  13. [13] M. SATO, T. KAWAI and M. KASHIWARA, Hyperfunctions and pseudodifferential equations, in Springer Lecture Notes in Math., vol. 287 (1973), 265-529. Zbl0277.46039MR54 #8747
  14. [14] R. SIGURDSSON, Growth properties of analytic and plurisubharmonic functions of finite order, Math. Scand., 59 (1986), 235-304. Zbl0619.32003MR88m:32002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.