An effective Matsusaka big theorem

Yum-Tong Siu

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 5, page 1387-1405
  • ISSN: 0373-0956

How to cite

top

Siu, Yum-Tong. "An effective Matsusaka big theorem." Annales de l'institut Fourier 43.5 (1993): 1387-1405. <http://eudml.org/doc/75042>.

@article{Siu1993,
author = {Siu, Yum-Tong},
journal = {Annales de l'institut Fourier},
keywords = {positive line bundle; holomorphic line bundle; compact complex manifold; estimates; closed positive current; Lelong number; strong Morse inequality; Matsusaka's big theorem; ample line bundle},
language = {eng},
number = {5},
pages = {1387-1405},
publisher = {Association des Annales de l'Institut Fourier},
title = {An effective Matsusaka big theorem},
url = {http://eudml.org/doc/75042},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Siu, Yum-Tong
TI - An effective Matsusaka big theorem
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 5
SP - 1387
EP - 1405
LA - eng
KW - positive line bundle; holomorphic line bundle; compact complex manifold; estimates; closed positive current; Lelong number; strong Morse inequality; Matsusaka's big theorem; ample line bundle
UR - http://eudml.org/doc/75042
ER -

References

top
  1. [D1] J.-P. DEMAILLY, Champs magnétiques et inégalités de Morse pour la d " cohomologie, Compte-Rendus Acad. Sci, Série I, 301 (1985), 119-122 and Ann. Inst. Fourier, 35-4 (1985), 189-229. Zbl0565.58017
  2. [D2] J.-P. DEMAILLY, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. Zbl0783.32013MR94d:14007
  3. [EL] L. EIN and R. LAZARSFELD, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, preprint, 1992. Zbl0803.14004
  4. [F] T. FUJITA, On polarized manifolds whose adjoint bundles are not semipositive, Proceedings of the 1985 Sendai Conference on Algebraic Geometry, Advanced Studies in Pure Mathematics, 10 (1987), 167-178. Zbl0659.14002MR89d:14006
  5. [K] J. KOLLÁR, Effective base point freeness, Math. Ann., to appear. Zbl0818.14002
  6. [KM] J. KOLLÁR and T. MATSUSAKA, Riemann-Roch type inequalities, Amer. J. Math., 105 (1983), 229-252. Zbl0538.14006MR85c:14007
  7. [L] P. LELONG, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1969. Zbl0195.11604
  8. [LM] D. LIEBERMAN and D. MUMFORD, Matsusaka's Big Theorem (Algebraic Geometry, Arcata 1974), Proceedings of Symposia in Pure Math., 29 (1975), 513-530. Zbl0321.14004MR52 #399
  9. [M1] T. MATSUSAKA, On canonically polarized varieties II, Amer. J. Math., 92 (1970), 283-292. Zbl0195.22802MR41 #8415b
  10. [M2] T. MATSUSAKA, Polarized varieties with a given Hilbert polynomial, Amer. J. Math., 94 (1972), 1027-1077. Zbl0256.14004MR49 #2729
  11. [N] A. NADEL, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 7299-7300 and Ann. of Math., 132 (1990), 549-596. Zbl0711.53056
  12. [S] Y.-T. SIU, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. Zbl0289.32003MR50 #5003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.