An effective Matsusaka big theorem
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 5, page 1387-1405
- ISSN: 0373-0956
Access Full Article
topHow to cite
topSiu, Yum-Tong. "An effective Matsusaka big theorem." Annales de l'institut Fourier 43.5 (1993): 1387-1405. <http://eudml.org/doc/75042>.
@article{Siu1993,
author = {Siu, Yum-Tong},
journal = {Annales de l'institut Fourier},
keywords = {positive line bundle; holomorphic line bundle; compact complex manifold; estimates; closed positive current; Lelong number; strong Morse inequality; Matsusaka's big theorem; ample line bundle},
language = {eng},
number = {5},
pages = {1387-1405},
publisher = {Association des Annales de l'Institut Fourier},
title = {An effective Matsusaka big theorem},
url = {http://eudml.org/doc/75042},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Siu, Yum-Tong
TI - An effective Matsusaka big theorem
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 5
SP - 1387
EP - 1405
LA - eng
KW - positive line bundle; holomorphic line bundle; compact complex manifold; estimates; closed positive current; Lelong number; strong Morse inequality; Matsusaka's big theorem; ample line bundle
UR - http://eudml.org/doc/75042
ER -
References
top- [D1] J.-P. DEMAILLY, Champs magnétiques et inégalités de Morse pour la cohomologie, Compte-Rendus Acad. Sci, Série I, 301 (1985), 119-122 and Ann. Inst. Fourier, 35-4 (1985), 189-229. Zbl0565.58017
- [D2] J.-P. DEMAILLY, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. Zbl0783.32013MR94d:14007
- [EL] L. EIN and R. LAZARSFELD, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, preprint, 1992. Zbl0803.14004
- [F] T. FUJITA, On polarized manifolds whose adjoint bundles are not semipositive, Proceedings of the 1985 Sendai Conference on Algebraic Geometry, Advanced Studies in Pure Mathematics, 10 (1987), 167-178. Zbl0659.14002MR89d:14006
- [K] J. KOLLÁR, Effective base point freeness, Math. Ann., to appear. Zbl0818.14002
- [KM] J. KOLLÁR and T. MATSUSAKA, Riemann-Roch type inequalities, Amer. J. Math., 105 (1983), 229-252. Zbl0538.14006MR85c:14007
- [L] P. LELONG, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1969. Zbl0195.11604
- [LM] D. LIEBERMAN and D. MUMFORD, Matsusaka's Big Theorem (Algebraic Geometry, Arcata 1974), Proceedings of Symposia in Pure Math., 29 (1975), 513-530. Zbl0321.14004MR52 #399
- [M1] T. MATSUSAKA, On canonically polarized varieties II, Amer. J. Math., 92 (1970), 283-292. Zbl0195.22802MR41 #8415b
- [M2] T. MATSUSAKA, Polarized varieties with a given Hilbert polynomial, Amer. J. Math., 94 (1972), 1027-1077. Zbl0256.14004MR49 #2729
- [N] A. NADEL, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 7299-7300 and Ann. of Math., 132 (1990), 549-596. Zbl0711.53056
- [S] Y.-T. SIU, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. Zbl0289.32003MR50 #5003
Citations in EuDML Documents
top- Michel Meo, Inégalités d'auto-intersection pour les courants positifs fermés définis dans les variétés projectives
- Jean-Pierre Demailly, János Kollár, Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds
- Jean-Pierre Demailly, Méthodes et résultats effectifs en géométrie algébrique
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.