Devil's staircase route to chaos in a forced relaxation oscillator
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 1, page 109-128
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1]L. ALSEDÀ, A. FALCÓ, The bifurcations of a piecewise monotone family of circle maps related to the Van der Pol equation, Procedings of European Conference on Iteration Theory, Caldes de Malavella, World Scientific, (1987).
- [2]L. ALSEDÀ, J. LLIBRE, R. SERRA, Bifurcations for a circle map associated with the Van der Pol equation, Sur la théorie de l'itération et ses applications, Colloque internationaux du CNRS Toulouse, 332 (1982). Zbl0523.34043MR87i:58126
- [3]L. ALSEDÀ, J. LLIBRE, M. MISIUREWICZ, Combinatorial dynamics and entropy in dimension one, Advanced Series on Nonlinear Dynamics, World Scientific, Singapore, 1993. Zbl0843.58034MR95j:58042
- [4]L. ALSEDÀ, F. MAÑOSAS, Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity, 3 (1990). Zbl0735.54026MR91e:58090
- [5]M.L. CARTWRIGHT, J.E. LITTLEWOOD, On nonlinear differential equations of second order II, Ann. of Math., 48 (1947). Zbl0029.12602
- [6]A. CHENCINER, J.M. GAMBAUDO, Ch. TRESSER, Une remarque sur la structure des endomorphismes de degré 1 du cercle, C. R. Acad. Sci., Paris série I, 299 (1984). Zbl0584.58004MR86b:58102
- [7]J. GUCKENHEIMER, P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. Zbl0515.34001
- [8]R. ITO, Rotation sets are closed, Math. Proc. Camb. Phil. Soc., 89 (1981). Zbl0484.58027MR82i:58061
- [9]A. KATOK, Some remarks on Birkhoff and Mather twist theorems Ergod., Theor. Dynam. Sys., 2 (1982). Zbl0521.58048
- [10]M.P. KENNEDY, K.R. KRIEG, L.O. CHUA, The Devil's Staircase : The Electrical Engineer's Fractal, IEEE Trans. on Circuits and Systems., 36 (1989), 1133-1139.
- [11]M. LEVI, Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math., Soc., 244 (1981). Zbl0448.34032MR82g:58052
- [12]N. LEVINSON, A second order differential equation with singular solutions, Ann. of Math., 50 (1949). Zbl0045.36501MR10,710b
- [13]J. MOSER, Stable and random motions in dynamical systems, Princeton University Press (1973).
- [14]M. MISIUREWICZ, Rotation intervals for a class of maps of the real line into itself, Ergod. Theor. Dynam. Sys., 6 (1986). Zbl0615.54030MR87k:58131
- [15]S.E. NEWHOUSE, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, IHES, 1977. Zbl0445.58022
- [16]B. VAN DER POL, On relaxation oscillations, Phil. Mag., 2 (1926). JFM52.0450.05
- [17]B. VAN DER POL, J. VAN DER MARK, Frequency demultiplication, Nature, 120 (1927).