Devil's staircase route to chaos in a forced relaxation oscillator

Lluis Alsedà; Antonio Falcó

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 1, page 109-128
  • ISSN: 0373-0956

Abstract

top
We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of secondary staircases intercalated into the primary staircases which were found by van der Pol and van der Mark (in [17]).

How to cite

top

Alsedà, Lluis, and Falcó, Antonio. "Devil's staircase route to chaos in a forced relaxation oscillator." Annales de l'institut Fourier 44.1 (1994): 109-128. <http://eudml.org/doc/75051>.

@article{Alsedà1994,
abstract = {We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of secondary staircases intercalated into the primary staircases which were found by van der Pol and van der Mark (in [17]).},
author = {Alsedà, Lluis, Falcó, Antonio},
journal = {Annales de l'institut Fourier},
keywords = {Devil's staircase route to chaos; relaxation oscillator of the Van der Pol type; symbolic dynamics},
language = {eng},
number = {1},
pages = {109-128},
publisher = {Association des Annales de l'Institut Fourier},
title = {Devil's staircase route to chaos in a forced relaxation oscillator},
url = {http://eudml.org/doc/75051},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Alsedà, Lluis
AU - Falcó, Antonio
TI - Devil's staircase route to chaos in a forced relaxation oscillator
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 1
SP - 109
EP - 128
AB - We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of secondary staircases intercalated into the primary staircases which were found by van der Pol and van der Mark (in [17]).
LA - eng
KW - Devil's staircase route to chaos; relaxation oscillator of the Van der Pol type; symbolic dynamics
UR - http://eudml.org/doc/75051
ER -

References

top
  1. [1]L. ALSEDÀ, A. FALCÓ, The bifurcations of a piecewise monotone family of circle maps related to the Van der Pol equation, Procedings of European Conference on Iteration Theory, Caldes de Malavella, World Scientific, (1987). 
  2. [2]L. ALSEDÀ, J. LLIBRE, R. SERRA, Bifurcations for a circle map associated with the Van der Pol equation, Sur la théorie de l'itération et ses applications, Colloque internationaux du CNRS Toulouse, 332 (1982). Zbl0523.34043MR87i:58126
  3. [3]L. ALSEDÀ, J. LLIBRE, M. MISIUREWICZ, Combinatorial dynamics and entropy in dimension one, Advanced Series on Nonlinear Dynamics, World Scientific, Singapore, 1993. Zbl0843.58034MR95j:58042
  4. [4]L. ALSEDÀ, F. MAÑOSAS, Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity, 3 (1990). Zbl0735.54026MR91e:58090
  5. [5]M.L. CARTWRIGHT, J.E. LITTLEWOOD, On nonlinear differential equations of second order II, Ann. of Math., 48 (1947). Zbl0029.12602
  6. [6]A. CHENCINER, J.M. GAMBAUDO, Ch. TRESSER, Une remarque sur la structure des endomorphismes de degré 1 du cercle, C. R. Acad. Sci., Paris série I, 299 (1984). Zbl0584.58004MR86b:58102
  7. [7]J. GUCKENHEIMER, P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. Zbl0515.34001
  8. [8]R. ITO, Rotation sets are closed, Math. Proc. Camb. Phil. Soc., 89 (1981). Zbl0484.58027MR82i:58061
  9. [9]A. KATOK, Some remarks on Birkhoff and Mather twist theorems Ergod., Theor. Dynam. Sys., 2 (1982). Zbl0521.58048
  10. [10]M.P. KENNEDY, K.R. KRIEG, L.O. CHUA, The Devil's Staircase : The Electrical Engineer's Fractal, IEEE Trans. on Circuits and Systems., 36 (1989), 1133-1139. 
  11. [11]M. LEVI, Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math., Soc., 244 (1981). Zbl0448.34032MR82g:58052
  12. [12]N. LEVINSON, A second order differential equation with singular solutions, Ann. of Math., 50 (1949). Zbl0045.36501MR10,710b
  13. [13]J. MOSER, Stable and random motions in dynamical systems, Princeton University Press (1973). 
  14. [14]M. MISIUREWICZ, Rotation intervals for a class of maps of the real line into itself, Ergod. Theor. Dynam. Sys., 6 (1986). Zbl0615.54030MR87k:58131
  15. [15]S.E. NEWHOUSE, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, IHES, 1977. Zbl0445.58022
  16. [16]B. VAN DER POL, On relaxation oscillations, Phil. Mag., 2 (1926). JFM52.0450.05
  17. [17]B. VAN DER POL, J. VAN DER MARK, Frequency demultiplication, Nature, 120 (1927). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.