Carleman estimates for a subelliptic operator and unique continuation

Nicola Garofalo; Zhongwei Shen

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 1, page 129-166
  • ISSN: 0373-0956

Abstract

top
We establish a Carleman type inequality for the subelliptic operator = Δ z + | x | 2 t 2 in n + 1 , n 2 , where z n , t . As a consequence, we show that - + V has the strong unique continuation property at points of the degeneracy manifold { ( 0 , t ) n + 1 | t } if the potential V is locally in certain L p spaces.

How to cite

top

Garofalo, Nicola, and Shen, Zhongwei. "Carleman estimates for a subelliptic operator and unique continuation." Annales de l'institut Fourier 44.1 (1994): 129-166. <http://eudml.org/doc/75052>.

@article{Garofalo1994,
abstract = {We establish a Carleman type inequality for the subelliptic operator $\{\cal L\}=\Delta _z + \vert x\vert ^2 \partial ^2_t$ in $\{\Bbb R\}^\{n+1\}$, $n\ge 2$, where $z\in \{\Bbb R\}^n$, $t\in \{\Bbb R\}$. As a consequence, we show that $-\{\cal L\}+V$ has the strong unique continuation property at points of the degeneracy manifold $\lbrace (0, t)\in \{\Bbb R\}^\{n+1\}\vert t\in \{\Bbb R\}\rbrace $ if the potential $V$ is locally in certain $L^p$ spaces.},
author = {Garofalo, Nicola, Shen, Zhongwei},
journal = {Annales de l'institut Fourier},
keywords = {Grushin operator; Carleman type inequality; subelliptic operator; strong unique continuation property},
language = {eng},
number = {1},
pages = {129-166},
publisher = {Association des Annales de l'Institut Fourier},
title = {Carleman estimates for a subelliptic operator and unique continuation},
url = {http://eudml.org/doc/75052},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Garofalo, Nicola
AU - Shen, Zhongwei
TI - Carleman estimates for a subelliptic operator and unique continuation
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 1
SP - 129
EP - 166
AB - We establish a Carleman type inequality for the subelliptic operator ${\cal L}=\Delta _z + \vert x\vert ^2 \partial ^2_t$ in ${\Bbb R}^{n+1}$, $n\ge 2$, where $z\in {\Bbb R}^n$, $t\in {\Bbb R}$. As a consequence, we show that $-{\cal L}+V$ has the strong unique continuation property at points of the degeneracy manifold $\lbrace (0, t)\in {\Bbb R}^{n+1}\vert t\in {\Bbb R}\rbrace $ if the potential $V$ is locally in certain $L^p$ spaces.
LA - eng
KW - Grushin operator; Carleman type inequality; subelliptic operator; strong unique continuation property
UR - http://eudml.org/doc/75052
ER -

References

top
  1. [ABV]W. O. AMREIN, A. M. BERTHIER and V. GEORGESCU, Lp inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, Grenoble, 31-3 (1981), 153-168. Zbl0468.35017MR83g:35011
  2. [B]H. BAHOURI, Non-prolongement unique des solutions d'opérateurs, “Somme de carrés”, Ann. Inst. Fourier, Grenoble, 36-4 (1986), 137-155. Zbl0603.35008MR88c:35027
  3. [C]T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'èquations aux derivées partielles à deux variables indépendantes, Ark. Mat., 26B (1939), 1-9. Zbl0022.34201MR1,55fJFM65.0394.03
  4. [E]A. ERDELYI (Director), Higher transcendental functions, Bateman manuscript project, McGraw-Hill, New York, 1955. Zbl0064.06302MR16,586c
  5. [G]N. GAROFALO, Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension, J. Diff. Eq., 104 (1) (1993), 117-146. Zbl0788.35051MR94i:35037
  6. [Gr]P. GREINER, Spherical harmonics on the Heisenberg group, Canad. Math. Bull., 23(4) (1980), 383-396. Zbl0496.22012MR82e:43009
  7. [Gru1]V.V. GRUSHIN, On a class of hypoelliptic operators, Math. USSR Sbornik, 12(3) (1970), 458-476. Zbl0252.35057
  8. [Gru2]V.V. GRUSHIN, On a class of hypoelliptic pseudodifferential operators degenerate on a submanifold, Math. USSR Sbornik, 13(2) (1971), 155-186. Zbl0238.47038
  9. [H]L. HÖRMANDER, Uniqueness theorems for second order elliptic differential equations, Comm. P. D. E., 8 (1983), 21-64. Zbl0546.35023MR85c:35018
  10. [J]D. JERISON, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. in Math., 63 (1986), 118-134. Zbl0627.35008MR88b:35218
  11. [JK]D. JERISON and C. E. KENIG, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math., 121 (1985), 463-494. Zbl0593.35119MR87a:35058
  12. [K]C.E. KENIG, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, Lecture Notes in Math., 1384 (1989) 69-90. Zbl0685.35003
  13. [RS]L.P. ROTHSCHILD and E.M. STEIN, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. Zbl0346.35030MR55 #9171
  14. [SS]M. SCHECHTER and B. SIMON, Unique continuation for Schrödinger operators with unbounded potential, J. Math. Anal. Appl., 77 (1980), 482-492. Zbl0458.35024MR83b:35031
  15. [S]C.D. SOGGE, Oscillatory integrals and spherical harmonics, Duke Math. J., 53 (1986), 43-65. Zbl0636.42018MR87g:42026
  16. [SW]E.M. STEIN and G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. Zbl0232.42007MR46 #4102
  17. [Sz] G. SZEGÖ, Orthogonal Polynomials, A. M. S. Colloq. Publ., 4th edition, 23, 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.