Circle bundles, adiabatic limits of η -invariants and Rokhlin congruences

Weiping Zhang

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 1, page 249-270
  • ISSN: 0373-0956

Abstract

top
We present a direct analytic treatment of the Rokhlin congruence formula [ R2 ] by calculating the adiabatic limit of η -invariants of Dirac operators on circle bundles. Extensions to higher dimensions are obtained.

How to cite

top

Zhang, Weiping. "Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences." Annales de l'institut Fourier 44.1 (1994): 249-270. <http://eudml.org/doc/75057>.

@article{Zhang1994,
abstract = {We present a direct analytic treatment of the Rokhlin congruence formula $[$R2$]$ by calculating the adiabatic limit of $\eta $-invariants of Dirac operators on circle bundles. Extensions to higher dimensions are obtained.},
author = {Zhang, Weiping},
journal = {Annales de l'institut Fourier},
keywords = {analytic treatment of the Rokhlin congruence formula; adiabatic limit of -invariants of Dirac operators on circle bundles},
language = {eng},
number = {1},
pages = {249-270},
publisher = {Association des Annales de l'Institut Fourier},
title = {Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences},
url = {http://eudml.org/doc/75057},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Zhang, Weiping
TI - Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 1
SP - 249
EP - 270
AB - We present a direct analytic treatment of the Rokhlin congruence formula $[$R2$]$ by calculating the adiabatic limit of $\eta $-invariants of Dirac operators on circle bundles. Extensions to higher dimensions are obtained.
LA - eng
KW - analytic treatment of the Rokhlin congruence formula; adiabatic limit of -invariants of Dirac operators on circle bundles
UR - http://eudml.org/doc/75057
ER -

References

top
  1. [AGW]L. ALVAREZ-GAUMÉ and E. WITTEN, Gravitational anomalies, Nuc. Phys., B 234 (1983), 269-330. 
  2. [A]M.F. ATIYAH, Riemann surfaces and spin structures, Ann. Sci. Ecole Norm. Sup., 4 (1971), 42-62. Zbl0212.56402MR44 #3350
  3. [ABS]M.F. ATIYAH, R. BOTT, and A. SHARPIRO, Clifford modules, Topology, 3 (1964, Suppl.), 3-38. Zbl0146.19001MR29 #5250
  4. [AH]M.F. ATIYAH and F. HIRZEBRUCH, Riemann-Roch theorems for differentiable manifolds, Bull. AMS, 65 (1959), 276-281. Zbl0142.40901MR22 #989
  5. [APS]M.F. ATIYAH, V.K. PATODI, and I.M. SINGER, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69. Zbl0297.58008MR53 #1655a
  6. [BeGeV]N. BERLINE, E. GETZLER and M. VERGNE, Heat kernels and Dirac operators, Springer-Verlag (1992). Zbl0744.58001MR94e:58130
  7. [B]J.-M. BISMUT, The index theorem for families of Dirac operators : two heat equation proofs, Invent. Math., 83 (1986), 91-151. Zbl0592.58047MR87g:58117
  8. [BC1]J.-M. BISMUT and J. CHEEGER, η-invariants and their adiabatic limits, JAMS, 2 (1989), 33-70. Zbl0671.58037MR89k:58269
  9. [BC2]J.-M. BISMUT and J. CHEEGER, Transgressed Euler classes of SL (2n, ℤ) vector bundles, adiabatic limits of eta invariants and special values of L-functions, Ann. Sci. Ecole Norm. Sup., Série 4, 25 (1992), 335-391. Zbl0768.58048
  10. [BZ]J.-M. BISMUT and W. ZHANG, Real embeddings and eta invariants, Math. Ann., 295 (1993), 661-684. Zbl0795.57010MR94e:58131
  11. [Br]E.H. BROWN, Generalizations of the Kervaire invariant, Ann. Math., 95 (1972), 368-383. Zbl0241.57014MR45 #2719
  12. [D]X. DAI, Adiabatic limits, nonmultiplicity of signature, and Leray spectral sequence, JAMS, 4 (1991), 265-321. Zbl0736.58039
  13. [ESV]H. ESNAULT, J. SEADE and E. VIEHWEG, Characteristic divisors on complex manifolds, J. reine angew. Math., 424 (1992), 17-30. Zbl0752.14008MR93h:32042
  14. [F]S.M. FINASHIN, A pinȃ-cobordism invariant and a generalization of the Rokhlin signature congruence, Leningrad Math. J., 2 (1991), 917-924. Zbl0729.57015MR91i:57016
  15. [G]P.B. GILKEY, The eta invariant for even dimensional pinc manifolds, Adv. Math., 58 (1985), 243-284. Zbl0602.58041MR87b:58089
  16. [GM]L. GUILLOU and A. MARIN, Une extension d'un théorème de Rokhlin sur la signature, C.R. Acad. Sci. Paris, Série A., 285 (1977), 95-98. Zbl0361.57018MR55 #13440
  17. [J]D. JOHNSON, Spin structures and quadratic forms on surfaces, J. London Math. Soc., 22 (1980), 365-373. Zbl0454.57011MR81m:57015
  18. [KT]R.C. KIRBY and L.R. TAYLOR, Pin structures on low-dimensional manifolds, in Geometry of Low-dimensional Manifolds, vol. 2, 177-242. Ed. S.K. Donaldson and C.B. Thomas, Cambridge Univ. Press (1990). Zbl0754.57020MR94b:57031
  19. [L]P.S. LANDWEBER, Elliptic cohomology and modular forms. in Elliptic Curves and Modular Forms in Topology, 55-68. Ed. P.S. Landweber, Lecture Notes in Math. vol., 1326, Springer-Verlag (1988). Zbl0649.57022MR970281
  20. [O1]S. OCHANINE, Signature modulo 16, invariants de Kervaire généralisés et nombres caractéristiques dans la K-théorie réelle, Supplément au Bull. Soc. Math. France, 109 (1981), mémoire n° 5. Zbl0462.57012
  21. [O2]S. OCHANINE, Elliptic genera, modular forms over KO*, and the Brown-Kervaire invariants, Math. Z., 206 (1991), 277-291. Zbl0714.57013MR92a:57031
  22. [R1]V.A. ROKHLIN, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk. S.S.S.R., 84 (1952), 221-224. Zbl0046.40702
  23. [R2]V.A. ROKHLIN, Proof of a conjecture of Gudkov, Funct. Anal. Appl., 6 (1972), 136-138. Zbl0259.14010
  24. [S]S. STOLZ, Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math., 94 (1988), 147-162. Zbl0656.58032MR89j:57027
  25. [W]E. WITTEN, Elliptic genera and quantum field theory, Comm. Math. Phys., 109 (1987), 525-536. Zbl0625.57008MR89i:57017
  26. [Z1]W. ZHANG, η-invariants and Rokhlin congruences, C.R.A.S. Paris, Série A, 315 (1992), 305-308. Zbl0767.57015MR93k:57057
  27. [Z2]W. ZHANG, Elliptic genera and Rokhlin congruences, Preprint IHES/M/92/76. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.