Transgressed Euler classes of SL ( 2 n , 𝐙 ) vector bundles, adiabatic limits of eta invariants and special values of L -functions

Jean-Michel Bismut; Jeff Cheeger

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 4, page 335-391
  • ISSN: 0012-9593

How to cite

top

Bismut, Jean-Michel, and Cheeger, Jeff. "Transgressed Euler classes of ${\rm SL}(2n,\mathbf {Z})$ vector bundles, adiabatic limits of eta invariants and special values of $L$-functions." Annales scientifiques de l'École Normale Supérieure 25.4 (1992): 335-391. <http://eudml.org/doc/82322>.

@article{Bismut1992,
author = {Bismut, Jean-Michel, Cheeger, Jeff},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {zeta functions; functions; signature of the Hilbert modular varieties; Euler class; local families index theorem; eta invariant},
language = {eng},
number = {4},
pages = {335-391},
publisher = {Elsevier},
title = {Transgressed Euler classes of $\{\rm SL\}(2n,\mathbf \{Z\})$ vector bundles, adiabatic limits of eta invariants and special values of $L$-functions},
url = {http://eudml.org/doc/82322},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Bismut, Jean-Michel
AU - Cheeger, Jeff
TI - Transgressed Euler classes of ${\rm SL}(2n,\mathbf {Z})$ vector bundles, adiabatic limits of eta invariants and special values of $L$-functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 4
SP - 335
EP - 391
LA - eng
KW - zeta functions; functions; signature of the Hilbert modular varieties; Euler class; local families index theorem; eta invariant
UR - http://eudml.org/doc/82322
ER -

References

top
  1. [A] M. F. ATIYAH, The Logarithm of the Dedekind η-Function, Math. Annal., Vol. 278, 1987, pp. 335-380. Zbl0648.58035MR89h:58177
  2. [ABo] M. F. ATIYAH and R. BOTT, A Lefschetz Fixed Point Formula for Elliptic Complexes, Ann. Math. II, Vol. 88, 1968, pp. 451-491. Zbl0167.21703MR38 #731
  3. [ABoP] M. F. ATIYAH, R. BOTT and V. K. PATODI, On the Heat Equation and the Index Theorem, Invent. Math., Vol. 19, 1973, pp. 279-330. Zbl0257.58008MR58 #31287
  4. [ADS] M. F. ATIYAH, H. DONNELLY and I. M. SINGER, Eta Invariants, Signature Defects of Cusps and Values of L-Functions, Ann. Math., Vol. 18, 1983, pp. 131-177. Zbl0531.58048MR86g:58134a
  5. [APS1] M. F. ATIYAH, V. K. PATODI and I. M. SINGER, Spectral Asymmetry and Riemannian Geometry. I, Math. Proc. Cambridge Philos. Soc., Vol. 77, 1975, pp. 43-69. Zbl0297.58008MR53 #1655a
  6. [APS2] M. F. ATIYAH, V. K. PATODI and I. M. SINGER, Spectral Asymmetry and Riemannian Geometry. II, Math. Proc. Cambridge Philos. Soc., Vol. 78, 1976, pp. 405-432. Zbl0314.58016MR53 #1655b
  7. [AS] M. F. ATIYAH and I. M. SINGER, The Index of Elliptic Operator IV, Ann. Math., Vol. 93, 1971, pp. 119-138. Zbl0212.28603MR43 #5554
  8. [B1] J. M. BISMUT, The Atiyah-Singer Index Theorem for Families of Dirac Operators : Two Heat Equation Proofs, Invent. Math., Vol. 83, 1986, pp. 91-151. Zbl0592.58047MR87g:58117
  9. [B2] J. M. BISMUT, Formules de Lichnerowicz et théorème de l'indice, in Géométrie différentielle, D. BERNARD, Y. CHOQUET-BRUHAT Ed., pp. 11-31. Travaux en cours, Paris, Hermann, 1988. Zbl0648.58033MR90f:58165
  10. [BC] J. M. BISMUT and J. CHEEGER, η-Invariants and their Adiabatic Limits, J. A.M.S., Vol. 2, 1989, pp. 33-70. Zbl0671.58037MR89k:58269
  11. [BF] J. M. BISMUT and D. S. FREED, The Analysis of Elliptic Families II, Comm. Math. Phys., Vol. 107, 1986, pp. 103-163. Zbl0657.58038MR88h:58110b
  12. [BGS1] J. M. BISMUT, H. GILLET and C. SOULÉ, Analytic Torsion and Holomorphic Determinant Bundles. II, Comm. Math. Phys., Vol. 115, 1988, pp. 79-126. Zbl0651.32017MR89g:58192b
  13. [BGS2] J. M. BISMUT, H. GILLET and C. SOULÉ, Complex Immersions and Arakelov Geometry in The Grothendieck Festschrift, Vol. 1, P. CARTIER et al. Eds., pp. 249-331. Boston, Birkhaüser, 1990. Zbl0744.14015MR92a:14019
  14. [CaSha] S. CAPPELL and J. SHANESON, Piecewise Linear Embeddings, Ann. Math., Vol. 103, 1976, pp. 163-228. Zbl0346.57005MR53 #11629
  15. [C] J. CHEEGER, η-Invariants, the Adiabatic Approximation and Conical Singularities, J. Diff. Geom., Vol. 26, 1987, pp. 175-221. Zbl0623.58021MR89c:58123
  16. [CGT] J. CHEEGER, M. GROMOV and M. TAYLOR, Finite Propagation Speed, Kernel Estimates of the Laplace Operator, and the Geometry of Complete Riemannian Manifolds, J. Diff. Geom., Vol. 17, 1982, pp. 15-53. Zbl0493.53035MR84b:58109
  17. [CS] J. CHEEGER and J. SIMONS, Differential Characters and Geometric Invariants, in Geometry and Topology, J. ALEXANDER and J. HARER Ed., Lect. Notes Math., n° 1167, pp. 50-80, Berlin-Heidelberg-New York, Springer, 1985. Zbl0621.57010MR87g:53059
  18. [Ch] S. S. CHERN, A Simple Intrinsic Proof of the Gauss-Bonnet Formula for Closed Manifolds, Ann. Math., Vol. 45, 1944, pp. 747-752. Zbl0060.38103MR6,106a
  19. [D] X. DAI, Ph. D thesis, SUNY, 1989. 
  20. [H] F. HIRZEBRUCH, Hilbert Modular Surfaces. Enseign. Math., 1973, pp. 183-281. Zbl0285.14007MR52 #13856
  21. [LeSc] R. LEE and R. SCZARBA, On the Torsion of K4 (ℤ) and K5 (ℤ), Duke Math. J., Vol. 45, 1978, pp. 101-129. Zbl0385.18009
  22. [L] A. LICHNEROWICZ, Spineurs harmoniques, C. R. Acad. Sci. Paris, T. 257, Série A, 1963, pp. 7-9. Zbl0136.18401MR27 #6218
  23. [Ma] Y. MANIN, Gauge Field Theory and Complex Geometry, Grundl. der Math. Wiss, Vol. 289, Berlin-Heidelberg-New York, Springer, 1988. Zbl0641.53001MR89d:32001
  24. [MQ] V. MATHAI and D. QUILLEN, Superconnections, Thom Classes and Equivariant Differential Forms, Topology, 25, 1986, pp. 85-110. Zbl0592.55015MR87k:58006
  25. [Mü1] W. MÜLLER, Signature Defects of Cusps of Hilbert Modular Varieties and Values of L Series at s = 1, J. Diff. Geom., Vol. 20, 1984, pp. 55-119. Zbl0575.10023MR87c:11048
  26. [Mü2] W. MÜLLER, Manifolds with Cusps of Rank One : Spectral Theory and L2 Index Theorem, Lect. Notes Math., n° 1244, Berlin-Heidelberg-New York, Springer, 1987. Zbl0632.58001
  27. [Mü3] W. MÜLLER, L2 Index Theory, Eta Invariants and Values of L-Functions, in Geometric and Topological Invariants of Elliptic Operators, J. KAMINKER Ed., pp. 145-189, Contemporary Math., n° 105, Providence, AMS, 1990. Zbl0705.58048
  28. [Q] D. QUILLEN, Superconnections and the Chern Character, Topology, Vol. 24, 1985, pp. 89-95. Zbl0569.58030MR86m:58010
  29. [Sa] F. SATOZeta Functions in Several Variables Associated with Prehomogeneous Vector Spaces. I. Functional Equations, Tôhoku Math. J., Vol. 34, 1982, pp. 437-483. Zbl0497.14007MR84e:12015a
  30. [Sat Shin] M. SATO and T. SHINTANI, On Zeta Functions Associated with Prehomogeneous Vector Spaces, Ana. Math., Vol. 100, 1974, pp. 131-170. Zbl0309.10014MR49 #8969
  31. [Su1] D. SULLIVAN, La classe d'Euler réelle d'un fibré vectoriel à groupe structural SLn (Z) est nulle, C. R. Acad. Sci. Paris, 281, Série A, 1975, pp. 17-18. Zbl0312.55022MR51 #9077
  32. [Su2] D. SULLIVAN, Geometric Topology Seminar Notes, Princeton University, 1967. 
  33. [Su3] D. SULLIVAN, Geometric Topology, Part I, M.I.T., 1970. 
  34. [Sh] H. SHIMIZU, On Discontinuous Groups Acting on the Product of Upper Half Planes, Ann. Math., Vol. 77, 1963, pp. 33-71. Zbl0218.10045MR26 #2641
  35. [Si] C. L. SIEGEL, Uber die Fourierschen Koeffizienten von Modulformen. Göttingen Nachrichten, Math. Phys. Classe, 1970, pp. 15-56. Zbl0225.10031MR44 #2706
  36. [St] M. STERN, Lefschetz formulae for arithmetic varieties (preprint). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.