Diabatic limit, eta invariants and Cauchy–Riemann manifolds of dimension 3
Olivier Biquard; Marc Herzlich; Michel Rumin
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 4, page 589-631
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBiquard, Olivier, Herzlich, Marc, and Rumin, Michel. "Diabatic limit, eta invariants and Cauchy–Riemann manifolds of dimension 3." Annales scientifiques de l'École Normale Supérieure 40.4 (2007): 589-631. <http://eudml.org/doc/82721>.
@article{Biquard2007,
author = {Biquard, Olivier, Herzlich, Marc, Rumin, Michel},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {589-631},
publisher = {Elsevier},
title = {Diabatic limit, eta invariants and Cauchy–Riemann manifolds of dimension 3},
url = {http://eudml.org/doc/82721},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Biquard, Olivier
AU - Herzlich, Marc
AU - Rumin, Michel
TI - Diabatic limit, eta invariants and Cauchy–Riemann manifolds of dimension 3
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 4
SP - 589
EP - 631
LA - eng
UR - http://eudml.org/doc/82721
ER -
References
top- [1] Apanasov B.V., Geometry and topology of complex hyperbolic and Cauchy–Riemannian manifolds, Russian Math. Surveys52 (1997) 895-928. Zbl0920.32024
- [2] Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc.77 (1975) 43-69. Zbl0297.58008MR397797
- [3] Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc.78 (1975) 405-432. Zbl0314.58016MR397798
- [4] Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry, III, Math. Proc. Cambridge Philos. Soc.79 (1976) 71-99. Zbl0325.58015MR397799
- [5] Beals R., Greiner P., Calculus on Heisenberg Manifolds, Annals of Mathematics Studies, vol. 119, Princeton University Press, Princeton, 1988. Zbl0654.58033MR953082
- [6] Beals R., Greiner P.C., Stanton N.K., The heat equation on a CR manifold, J. Diff. Geom.20 (1984) 343-387. Zbl0553.58029MR788285
- [7] Belgun F., Normal CR structures on compact 3-manifolds, Math. Z.238 (2001) 441-460. Zbl1043.32020MR1869692
- [8] Belgun F., Normal CR structures on , Math. Z.244 (2003) 121-151. Zbl1044.32027MR1981879
- [9] Biquard O., Métriques d'Einstein à cusps et équations de Seiberg–Witten, J. reine angew. Math.490 (1997) 129-154. Zbl0891.53029
- [10] Biquard O., Métriques d'Einstein asymptotiquement symétriques, Astérisque, vol. 265, Soc. Math. France, Paris, 2000, English translation:, Asymptotically Symmetric Metrics, SMF/AMS Texts and Monographs, vol. 13, AMS, 2006. Zbl0967.53030
- [11] Biquard O., Herzlich M., A Burns–Epstein invariant for ACHE 4-manifolds, Duke Math. J.126 (2005) 53-100. Zbl1074.53037
- [12] Bismut J.M., Cheeger J., η-invariants and their adiabatic limits, J. Amer. Math. Soc.2 (1989) 33-70. Zbl0671.58037
- [13] Bismut J.-M., Freed D.S., The analysis of elliptic families. Dirac operators, eta invariants, and the holonomy theorem, Commun. Math. Phys.107 (1986) 103-163. Zbl0657.58038MR861886
- [14] Burns D., Epstein C.L., A global invariant for CR three dimensional CR-manifolds, Invent. Math.92 (1988) 333-348. Zbl0643.32006MR936085
- [15] Burns D., Epstein C.L., Characteristic numbers of bounded domains, Acta Math.164 (1990) 29-71. Zbl0704.32005MR1037597
- [16] Calderbank D.M.J., Singer M.A., Einstein metrics and complex singularities, Invent. Math.156 (2004) 405-443. Zbl1061.53026MR2052611
- [17] Carron G., Pedon E., On the differential form spectrum of hyperbolic manifolds, Ann. Scuol. Norm. Sup. (Pisa) (V)3 (2004) 707-745. Zbl1170.53309MR2124586
- [18] Catlin D., Extension of CR structures, in: Several Complex Variables and Complex Geometry, Part 3, Santa Cruz, 1989, Proc. Symp. Pure Math., vol. 52, Amer. Math. Soc., 1991, pp. 27-34. Zbl0790.32020MR1128581
- [19] Cheng J.-H., Lee J.M., The Burns–Epstein invariant and deformation of CR structures, Duke Math. J.60 (1990) 221-254. Zbl0704.53028
- [20] Cheng S.Y., Yau S.T., On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math.33 (1980) 507-544. Zbl0506.53031MR575736
- [21] Chern S.-S., Moser J., Real hypersurfaces in complex manifolds, Acta Math.133 (1974) 219-271. Zbl0302.32015MR425155
- [22] Chern S.-S., Simons J., Characteristic forms and geometric invariants, Ann. of Math.99 (1974) 48-69. Zbl0283.53036MR353327
- [23] Dai X., Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J. Amer. Math. Soc.4 (1991) 265-321. Zbl0736.58039MR1088332
- [24] Getzler E., An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Diff. Geom.29 (1989) 231-244. Zbl0714.58053MR982172
- [25] Gilkey P.B., Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Wilmington, 1984. Zbl0565.58035
- [26] Graham C.R., Volume and area renormalizations for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo Suppl.63 (2000) 31-42. Zbl0984.53020MR1758076
- [27] Harvey F.R., Lawson H.B., On boundaries of complex analytic varieties, Ann. of Math.102 (1975) 223-290. Zbl0317.32017MR425173
- [28] Herzlich M., A remark on renormalized volume and Euler characteristic on asymptotically complex hyperbolic Einstein 4-manifolds, Diff. Geom. Appl.25 (2007) 78-91. Zbl1129.53027MR2293643
- [29] Hitchin N.J., Einstein metrics and the Eta-invariant, Bolletino U.M.I.11-B, Suppl., 95–105. Zbl0973.53519
- [30] Julg P., Kasparov G., Operator K-theory for the group , J. reine angew. Math.463 (1995) 99-152. Zbl0819.19004MR1332908
- [31] Kamishima Y., Tsuboi T., CR-structures on Seifert manifolds, Invent. Math.104 (1991) 149-163. Zbl0728.32012MR1094049
- [32] Kawasaki T., The Riemann–Roch theorem for complex V-manifolds, Osaka J. Math.16 (1979) 151-159. Zbl0405.32010
- [33] Komuro M., On Atiyah–Patodi–Singer η-invariant for -bundles over Riemann surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math.30 (1984) 525-548. Zbl0534.58036
- [34] Kronheimer P.B., Mrowka T.S., Monopoles and contact structures, Invent. Math.130 (1997) 209-255. Zbl0892.53015MR1474156
- [35] Lee J.M., The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer. Math. Soc.296 (1986) 411-429. Zbl0595.32026MR837820
- [36] Lee J.M., Pseudo-Einstein structures on CR manifolds, Amer. J. Math110 (1988) 157-178. Zbl0638.32019MR926742
- [37] Lisca P., On lens spaces and their symplectic fillings, Math. Res. Lett.11 (2004) 13-22. Zbl1055.57035MR2046195
- [38] Lisca P., Matić G., Tight contact structures and Seiberg–Witten invariants, Invent. Math.129 (1997) 509-525. Zbl0882.57008
- [39] Lutz R., Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier (Grenoble)29 (1979) 283-306. Zbl0379.53011MR526789
- [40] Nicolaescu L.I., Finite energy Seiberg–Witten moduli spaces on 4-manifolds bounding Seifert fibrations, Comm. Anal. Geom.8 (2000) 1027-1096. Zbl1001.58004
- [41] Ouyang M., Geomeric invariants for Seifert fibred 3-manifolds, Trans. Amer. Math. Soc.346 (1994) 641-659. Zbl0843.57015MR1257644
- [42] Patterson S.J., Perry P.A., The divisor of Selberg's zeta function for Kleinian groups, with an Appendix by C.L. Epstein, Duke Math. J.106 (2001) 321-390. Zbl1012.11083MR1813434
- [43] Ponge R., A new short proof of the local index formula and some of its applications, Commun. Math. Phys.241 (2003) 215-234, Erratum, Commun. Math. Phys.248 (2004) 639. Zbl1191.58006MR2013798
- [44] Ponge R., Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Memoirs AMS, in press, math.AP/0509300. Zbl1143.58014
- [45] Rollin Y., Rigidité d'Einstein du plan hyperbolique complexe, J. reine angew. Math.567 (2004) 175-213. Zbl1038.53044MR2038308
- [46] Rumin M., Formes différentielles sur les variétés de contact, J. Diff. Geom.39 (1994) 281-330. Zbl0973.53524MR1267892
- [47] Rumin M., Sub-Riemannian limit of the differential form spectrum of contact manifolds, Geom. Funct. Anal.10 (2000) 407-452. Zbl1008.53033MR1771424
- [48] Seeley R.T., Complex powers of an elliptic operator, in: Singular Integrals, Chicago, 1966, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, 1967, pp. 288-307. Zbl0159.15504MR237943
- [49] Seshadri N., Volume renormalisation for complete Einstein–Kähler metrics, Diff. Geom. Appl., in press, math.DG/0404455. Zbl1152.32017
- [50] Shubin M.A., Pseudodifferential Operators and Spectral Theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Zbl0616.47040MR883081
- [51] Stanton N.K., Spectral invariants of CR manifolds, Michigan Math. J.36 (1989) 267-288. Zbl0685.58033MR1000530
- [52] Stipsicz A.I., On the geography of Stein fillings of certain 3-manifolds, Michigan Math. J.51 (2003) 327-337. Zbl1043.53066MR1992949
- [53] Taylor M.E., Noncommutative Microlocal Analysis. I, Mem. Amer. Math. Soc., vol. 52, 1984. Zbl0554.35025MR764508
- [54] Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Diff. Geom.13 (1978) 25-41. Zbl0379.53016MR520599
- [55] Zhang W.P., Circle bundles, adiabatic limits of η-invariants and Rokhlin congruences, Ann. Inst. Fourier (Grenoble)44 (1994) 249-270. Zbl0792.57012
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.