Homologie des espaces de lacets des espaces de configuration

Yves Félix; Jean-Claude Thomas

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 2, page 559-568
  • ISSN: 0373-0956

Abstract

top
We compute the loop space homology of the space F ( M , k ) of configurations of k points in a compact simply connected manifold M . We prove in particular that, if H * ( M , ) is not generated by one generator, then the rational homology of Ω F ( M , k ) contains a tensor algebra for k 2 .

How to cite

top

Félix, Yves, and Thomas, Jean-Claude. "Homologie des espaces de lacets des espaces de configuration." Annales de l'institut Fourier 44.2 (1994): 559-568. <http://eudml.org/doc/75073>.

@article{Félix1994,
abstract = {Nous calculons dans ce texte l’homologie de l’espace des lacets de l’espace des configurations ordonnées de $k$ points dans une variété compacte simplement connexe $M$.},
author = {Félix, Yves, Thomas, Jean-Claude},
journal = {Annales de l'institut Fourier},
keywords = {homology of loop spaces of configuration spaces of simply connected manifolds},
language = {fre},
number = {2},
pages = {559-568},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homologie des espaces de lacets des espaces de configuration},
url = {http://eudml.org/doc/75073},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Félix, Yves
AU - Thomas, Jean-Claude
TI - Homologie des espaces de lacets des espaces de configuration
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 2
SP - 559
EP - 568
AB - Nous calculons dans ce texte l’homologie de l’espace des lacets de l’espace des configurations ordonnées de $k$ points dans une variété compacte simplement connexe $M$.
LA - fre
KW - homology of loop spaces of configuration spaces of simply connected manifolds
UR - http://eudml.org/doc/75073
ER -

References

top
  1. [1]C.-F. BÖDIGHEIMER, F. COHEN and L. TAYLOR, On the homology of configuration spaces, Topology, 28 (1989), 111-123. Zbl0689.55012MR90h:57031
  2. [2]W. BROWDER, Differential Hopf algebras, Trans. of the Amer. Math. Soc., 107 (1963), 153-176. Zbl0114.39304MR26 #3061
  3. [3]R.F. BROWN and J.H. WHITE, Homology and Morse Theory of Third Configuration Spaces, Indiana University Math. Journal, 30 (1981), 501-512. Zbl0432.57012MR83a:57044
  4. [4]F.R. COHEN, The homology of Cn+1 spaces, n ≥ 0, in F.R. Cohen, T.J. Lada and J.P. May, The homology of iterated loop spaces, Springer-Verlag, Lecture Notes in Math., 533 (1976). Zbl0334.55009
  5. [5]F.R. COHEN and L.R. TAYLOR, Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, in Geometric Applications of Homotopy Theory I, Proceedings Evanston 1977, Edited by Barratt and Mahowald, Lecture Notes in Mathematics 657, Springer-Verlag (1978), 106-143. Zbl0398.55004
  6. [6]E. FADELL and L. NEUWIRTH, Configuration spaces, Math. Scand., 10 (1962), 111-118. Zbl0136.44104MR25 #4537
  7. [7]Y. FÉLIX and S. HALPERIN, Rational L.S. category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-32. Zbl0508.55004MR84h:55011
  8. [8]Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, The Serre spectral sequence of a multiplicative fibration, preprint (1993). Zbl0978.55012
  9. [9]Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Adam's cobar equivalence, Trans. Amer. Math. Soc., 329 (1992), 531-549. Zbl0765.55005MR92e:55007
  10. [10]Y. FÉLIX, J.-M. LEMAIRES. HALPERIN and J.-C. THOMAS, Mod p loop space homology, Invent. Math., 95 (1989), 247-262. Zbl0667.55007MR89k:55010
  11. [11]Y. FÉLIX et D. TANRÉ, Sur l'homologie de l'espace des lacets d'une variété compacte, Annales Ecole Norm. Sup., 25 (1992), 617-627. Zbl0774.57021MR93m:55019
  12. [12]Y. FÉLIX et J.-C. THOMAS, Module d'holonomie d'une fibration, Bull. Soc. Math. France, 113 (1985), 255-258. Zbl0587.55007MR87i:55022
  13. [13]Y. FÉLIX et J.-C. THOMAS, Effet d'un attachement cellulaire dans l'homologie de l'espace des lacets, Annales de l'Institut Fourier, 39-1 (1989), 207-224. Zbl0686.55005MR90j:55012
  14. [14]S. HALPERIN, Lectures on minimal models, Mémoire de la Soc. Math. France, 9/10 (1983). Zbl0536.55003MR85i:55009
  15. [15]S. HALPERIN et J.-M. LEMAIRE, Suites inertes dans les algèbres de Lie graduées, Math. Scand., 61 (1987), 39-67. Zbl0655.55004MR89e:55022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.