Finite monodromy of Pochhammer equation
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 3, page 767-810
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHaraoka, Yoshishige. "Finite monodromy of Pochhammer equation." Annales de l'institut Fourier 44.3 (1994): 767-810. <http://eudml.org/doc/75081>.
@article{Haraoka1994,
abstract = {We consider the monodromy group $G$ of the Pochhammer differential equation $\{\cal P\}$. Let $\{\cal P\}_p$ be the reduce equation modulo a prime $p$. Then we show that $G$ is finite if and only if $\{\cal P\}_p$ has a full set of polynomial solutions for almost all primes $p$.},
author = {Haraoka, Yoshishige},
journal = {Annales de l'institut Fourier},
keywords = {Grothendieck’s zero -curvature conjecture; Okubo system; equations free from accessory parameters; Pochhammer equation; apparent singular point; monodromy group},
language = {eng},
number = {3},
pages = {767-810},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finite monodromy of Pochhammer equation},
url = {http://eudml.org/doc/75081},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Haraoka, Yoshishige
TI - Finite monodromy of Pochhammer equation
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 767
EP - 810
AB - We consider the monodromy group $G$ of the Pochhammer differential equation ${\cal P}$. Let ${\cal P}_p$ be the reduce equation modulo a prime $p$. Then we show that $G$ is finite if and only if ${\cal P}_p$ has a full set of polynomial solutions for almost all primes $p$.
LA - eng
KW - Grothendieck’s zero -curvature conjecture; Okubo system; equations free from accessory parameters; Pochhammer equation; apparent singular point; monodromy group
UR - http://eudml.org/doc/75081
ER -
References
top- [1] F. BEUKERS, G. HECKMAN, Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. Zbl0663.30044MR90f:11034
- [2] D.V. CHUDNOVSKY, G.V. CHUDNOVSKY, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. Zbl0565.14010MR87d:11053
- [3] Y. HARAOKA, Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).
- [4] Y. HARAOKA, Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. Zbl0809.34009
- [5] T. HONDA, Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. Zbl0464.12013MR83j:14010
- [6] E.L. INCE, Ordinary differential equations, New York, 1926. Zbl0063.02971
- [7] K. IWASAKI, H. KIMURA, S. SHIMOMURA, M. YOSHIDA, From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. Zbl0743.34014
- [8] N. KATZ, Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. Zbl0221.14007MR45 #271
- [9] N. KATZ, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. Zbl0278.14004MR49 #2728
- [10] E. LANDAU, Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. Zbl35.0463.01JFM35.0463.01
- [11] N. MISAKI, Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).
- [12] K. OKUBO, On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.
- [13] T. SASAI, On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. Zbl0367.35049MR58 #6426
- [14] T. SASAI, S. TSUCHIYA, On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. Zbl0744.34011MR93c:34015
- [15] K. TAKANO, E. BANNAI, A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. Zbl0349.34009MR54 #10720
- [16] E. WHITTAKER, G. WATSON, Modern Analysis, Cambridge, 1927.
- [17] T. YOKOYAMA, On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. Zbl0669.34014MR90c:39009
- [18] T. YOKOYAMA, On an irreducibility condition for hypergeometric systems, preprint. Zbl0834.34013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.