Finite monodromy of Pochhammer equation

Yoshishige Haraoka

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 767-810
  • ISSN: 0373-0956

Abstract

top
We consider the monodromy group G of the Pochhammer differential equation 𝒫 . Let 𝒫 p be the reduce equation modulo a prime p . Then we show that G is finite if and only if 𝒫 p has a full set of polynomial solutions for almost all primes p .

How to cite

top

Haraoka, Yoshishige. "Finite monodromy of Pochhammer equation." Annales de l'institut Fourier 44.3 (1994): 767-810. <http://eudml.org/doc/75081>.

@article{Haraoka1994,
abstract = {We consider the monodromy group $G$ of the Pochhammer differential equation $\{\cal P\}$. Let $\{\cal P\}_p$ be the reduce equation modulo a prime $p$. Then we show that $G$ is finite if and only if $\{\cal P\}_p$ has a full set of polynomial solutions for almost all primes $p$.},
author = {Haraoka, Yoshishige},
journal = {Annales de l'institut Fourier},
keywords = {Grothendieck’s zero -curvature conjecture; Okubo system; equations free from accessory parameters; Pochhammer equation; apparent singular point; monodromy group},
language = {eng},
number = {3},
pages = {767-810},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finite monodromy of Pochhammer equation},
url = {http://eudml.org/doc/75081},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Haraoka, Yoshishige
TI - Finite monodromy of Pochhammer equation
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 767
EP - 810
AB - We consider the monodromy group $G$ of the Pochhammer differential equation ${\cal P}$. Let ${\cal P}_p$ be the reduce equation modulo a prime $p$. Then we show that $G$ is finite if and only if ${\cal P}_p$ has a full set of polynomial solutions for almost all primes $p$.
LA - eng
KW - Grothendieck’s zero -curvature conjecture; Okubo system; equations free from accessory parameters; Pochhammer equation; apparent singular point; monodromy group
UR - http://eudml.org/doc/75081
ER -

References

top
  1. [1] F. BEUKERS, G. HECKMAN, Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. Zbl0663.30044MR90f:11034
  2. [2] D.V. CHUDNOVSKY, G.V. CHUDNOVSKY, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. Zbl0565.14010MR87d:11053
  3. [3] Y. HARAOKA, Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990). 
  4. [4] Y. HARAOKA, Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. Zbl0809.34009
  5. [5] T. HONDA, Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. Zbl0464.12013MR83j:14010
  6. [6] E.L. INCE, Ordinary differential equations, New York, 1926. Zbl0063.02971
  7. [7] K. IWASAKI, H. KIMURA, S. SHIMOMURA, M. YOSHIDA, From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. Zbl0743.34014
  8. [8] N. KATZ, Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. Zbl0221.14007MR45 #271
  9. [9] N. KATZ, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. Zbl0278.14004MR49 #2728
  10. [10] E. LANDAU, Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. Zbl35.0463.01JFM35.0463.01
  11. [11] N. MISAKI, Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese). 
  12. [12] K. OKUBO, On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987. 
  13. [13] T. SASAI, On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. Zbl0367.35049MR58 #6426
  14. [14] T. SASAI, S. TSUCHIYA, On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. Zbl0744.34011MR93c:34015
  15. [15] K. TAKANO, E. BANNAI, A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. Zbl0349.34009MR54 #10720
  16. [16] E. WHITTAKER, G. WATSON, Modern Analysis, Cambridge, 1927. 
  17. [17] T. YOKOYAMA, On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. Zbl0669.34014MR90c:39009
  18. [18] T. YOKOYAMA, On an irreducibility condition for hypergeometric systems, preprint. Zbl0834.34013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.