Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles

Phan Nguyen Huynh

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 967-985
  • ISSN: 0373-0956

Abstract

top
In this paper we construct canonical forms with continue on the strata of the stratification on the space of reachable antisymmetric hamiltonian linear systems H A n , m , p . We prove that the homology group of H A n , m , p is isomorphic to those of the Grassmann manifold. Then we prove that H A n , m , p is homotopically equivalent to the space of reachable linear systems.

How to cite

top

Phan Nguyen Huynh. "Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles." Annales de l'institut Fourier 44.3 (1994): 967-985. <http://eudml.org/doc/75086>.

@article{PhanNguyenHuynh1994,
abstract = {Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles $HA_\{n,m,p\}$. Nous construisons une stratification et une décomposition cellulaire analytique de $HA_\{n,m,p\}$, puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que $HA_\{n,m,p\}$ est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue de tous les systèmes hamiltoniens antisymétriques accessibles si la dimension de l’espace d’entrée est plus grande que 1. En utilisant des travaux de M. Guest et U. Helmke, on peut ainsi donner une démonstration du théorème de périodicité de Bott.},
author = {Phan Nguyen Huynh},
journal = {Annales de l'institut Fourier},
keywords = {homology group; Grassmann manifold},
language = {fre},
number = {3},
pages = {967-985},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles},
url = {http://eudml.org/doc/75086},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Phan Nguyen Huynh
TI - Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 967
EP - 985
AB - Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles $HA_{n,m,p}$. Nous construisons une stratification et une décomposition cellulaire analytique de $HA_{n,m,p}$, puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que $HA_{n,m,p}$ est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue de tous les systèmes hamiltoniens antisymétriques accessibles si la dimension de l’espace d’entrée est plus grande que 1. En utilisant des travaux de M. Guest et U. Helmke, on peut ainsi donner une démonstration du théorème de périodicité de Bott.
LA - fre
KW - homology group; Grassmann manifold
UR - http://eudml.org/doc/75086
ER -

References

top
  1. [1] M. AIGNER, Combinatorial theory, Grundlehren der Math. Wissenschaften, 234, Springer, 1979. Zbl0415.05001MR80h:05002
  2. [2] G. BIRKHOFF and S. MACLANE, A survey of modern algebra, Macmillan, New-York, 1977. Zbl0365.00006
  3. [3] A. BOREL et A. HEAFLIGER, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1966), 461-513. Zbl0102.38502
  4. [4] R. BOTT, Lecture on Morse Theory, Mathematische Institut der Universität Bonn, 1960. 
  5. [5] R. BOTT, The stable homotopy of the classical groups, Annals of Math., 70 (1959), 313-337. Zbl0129.15601MR22 #987
  6. [6] R.W. BROCKETT, Some geometric questions in the theory of linear systems, IEEE Trans. Autom. Control AC., 21 (1976), 449-455. Zbl0332.93040MR57 #9177b
  7. [7] P. BRUNOVSKY, A classification of linear controllable systemes, Kybernetica, 3 (1970), 173-187. Zbl0199.48202MR44 #1476
  8. [8] C.I. BYRNES, Algebraic and Geometric aspects of the analysis of feedback systems, NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences, vol. 62 : Geometrical Methods for the Theory of linear systems, eds C.I. Byrnes and C. Martin (Pro. of NATO Adv. Stu. In. and AMS summer in App. Math., Harvard University, Cambridge, Mass., June 18-29, 1979), D. Reidel Publishing Company, 1980, p. 83-122. Zbl0479.93048MR82e:93082
  9. [9] C.I. BYRNES and T.C. DUNCAN, A note on the topology of space of Hamiltonian transfer functions, Lectures in Appl. Math., vol. 18, p. 7-26, 1980, AMS-NASA-NATO Summer Sem., Havard Univ. Cambridge, Mass. 
  10. [10] C.I. BYRNES and T.C. DUNCAN, On certain topological invariants arising in system theory, from New Directions in Applied Mathematics 13, P. Hilton, G. Young eds, New-York, Springer, Verlag, 29-71, 1981. Zbl0483.93049
  11. [11] J. DIEUDONNÉ, Foundations of modern analysis, vol. 3, Academic Press, 1972. 
  12. [12] M. GUEST, Some relationships between homotopy theory and differential geometry, Ph. D. Thesis, Wolfson college, University of Oxford, 1981. 
  13. [13] V. GUILLEMIN and A. POLLACK, Differential topology, Prentice-Hall, Englewood Cliffs., New Jersey, 1974. Zbl0361.57001MR50 #1276
  14. [14] M. HAZEWINKEL, Moduli and canonical forms for linear dynamical systems II, The topological case, Math. Systems Theory, 10 (1976/1977), 363-385. Zbl0396.54037MR82h:93021a
  15. [15] M. HAZEWINKEL, Moduli and canonical forms for linear dynamical systems. III: The algebraic geometry case, Lie Groups: History frontiers and Applications, vol. 7, The 1976 AMES Research Center (NASA) Conference on Geometric Control Theory, C. Martin and R. Hermann eds, p. 291-336, Mat. Sci. Press. Zbl0368.93007
  16. [16] M. HAZEWINKEL, (Fine) Moduli (Space) for linear systems: What are they and What are they good for? NATO Advanced Study Institutes Series, Series C, Mathematical and Physical Sciences, vol. 62: Geometrical Methods for the Theory of linear systems, C.I. Byrnes and C. Martin eds (Proc. of NATO Adv. Stu. In. and AMS summer in App. Math., Harvard University, Cambridge, Mass., June 18-29, 1979), D. Reidel Publishing Company, 1980, p. 125-193. Zbl0481.93023MR82g:93024
  17. [17] U. HELMKE, Zur topologie des Raumes linearer Kontrollsysteme, Ph. D. Thesis, University Bremen, 1982. 
  18. [18] D. HINRICHSEN, Metrical and topological aspects of linear control theory., Syst. Anal. Model. Simul., 4 (1987), 1, 3-36. Zbl0676.93038MR88k:93003
  19. [19] D. HINRICHEN, D. SALOMON, A.J. PRITCHARD, E.P. CROUCH and al., Introduction to Mathematical system theory, Lecture notes for a joint course at the Universities of Warwick and Bremen, 1983. Zbl0565.58027
  20. [20] M.W. HIRSCH, Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, New York, 1976. Zbl0356.57001MR56 #6669
  21. [21] R.E. KALMAN, P.L. ARBIB and P.L. FALB, Topics in Mathematical System Theory, McGraw-Hill, 1969. Zbl0231.49001
  22. [22] LÊ DUNG TRANG, Sur un critère d'équisingularité, fonctions de plusieurs variables complexes, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, New York, vol. 409 (1974), 124-160. Zbl0296.14004MR50 #13026
  23. [23] LÊ DUNG TRANG et B. TESSIER, Cycles évanescents, sections planes et conditions de Whitney II, Proc. Symposia Pure Math., vol. 40, part 2 (1983), 65-103. Zbl0532.32003MR86c:32005
  24. [24] B.M. MANN and R.J. MILGRAM, Some space of holomorphic maps to complex Grassmann manifolds, J. Differential Geometry, 33 (1991), 301-324. Zbl0736.54008MR93e:55022
  25. [25] W.S. MASSEY, Homology and homotopy theory, Marcel Dekker, New York, 1978. 
  26. [26] J.W. MILNOR, Morse theory, Princeton University Press, 1963. Zbl0108.10401
  27. [27] J.W. MILNOR and J.D. STASHEFF, Characteristic classes, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974. Zbl0298.57008MR55 #13428
  28. [28] R. MNEIMNÉ et F. TESTARD, Introduction à la théorie des groupes de Lie classiques, Méthodes, Hermann, Paris, 1986. Zbl0598.22001MR89b:22001
  29. [29] R. NARASIMHAN, Analysis on real and complex manifold, Masson CIE, Paris, North-Holland Pub. Comp., Amsterdam, 1968. Zbl0188.25803MR40 #4972
  30. [30] NGUYEN HUYNH PHAN, On the topology of the space of reachable symmetric linear systems, Math. J. (TAP CHI TOAN HOC), Ha Noi, XV, I (1987), 16-26. Zbl0940.93502MR89m:93036
  31. [31] NGUYEN HUYNH PHAN, On the topology of the space of reachable symmetric linear systems, Lecture Notes in Mathamatics, vol. 1474, 1991, 235-253, Springer-Verlag, Berlin-Heidelberg, New York (Proccedings of the International Conference on Algebraic Topology, Poznan, Poland, June 22-27, S. Jackowski, B. OLiver, K. Pawalowski eds). Zbl0760.55007MR93a:57038
  32. [32] NGUYEN HUYNH PHAN, On the topology of the space of reachable skew-symmetric Hamiltonian linear systems, Rendiconti di Matematica, Serie VII, vol. 11, Roma 541-558, 1991. Zbl0735.70013MR93b:58056
  33. [33] V.M. POPOV, Invariant description of linear time-invariant controllable systems, SIAM J. Control, 10 (1972), 252-264. Zbl0251.93013MR57 #18925
  34. [34] E.H. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR35 #1007
  35. [35] G. SEGAL, The topology of space of rational funtions, Acta Math., 143 (1979), 39-72. Zbl0427.55006MR81c:55013
  36. [36] H. WHITNEY, Tangents to an analytic variety, Ann. of Math., (2), 81 (1965), 496-549. Zbl0152.27701MR33 #745
  37. [37] J.C. WONHAM, Linear multivariable control : A geometric approach, Lecture Notes, Economical and Math. Systems, 101, Springer, 1974. Zbl0314.93007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.