Quantum unique ergodicity for Eisenstein series on
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 5, page 1477-1504
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJakobson, Dmitry. "Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$." Annales de l'institut Fourier 44.5 (1994): 1477-1504. <http://eudml.org/doc/75106>.
@article{Jakobson1994,
abstract = {In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on $PSL_2(\{\Bbb Z\})\backslash PSL_2(\{\Bbb R\})$. This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for $PSL_2(\{\Bbb Z\})\backslash \{\Bbb H\}$. The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of $SL_2(\{\Bbb R\})$. In the proof the key estimates come from applying Meurman’s and Good’s results on $L$-functions associated to holomorphic and Maass cusp forms. One also has to use classical transformation formulas for generalized hypergeometric functions of a unit argument.},
author = {Jakobson, Dmitry},
journal = {Annales de l'institut Fourier},
keywords = {microlocal equidistribution theorem; Wigner distributions; congruence subgroups},
language = {eng},
number = {5},
pages = {1477-1504},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quantum unique ergodicity for Eisenstein series on $PSL_2(\{\mathbb \{Z\}\}\backslash PSL_2(\{\mathbb \{R\}\})$},
url = {http://eudml.org/doc/75106},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Jakobson, Dmitry
TI - Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1477
EP - 1504
AB - In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on $PSL_2({\Bbb Z})\backslash PSL_2({\Bbb R})$. This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for $PSL_2({\Bbb Z})\backslash {\Bbb H}$. The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of $SL_2({\Bbb R})$. In the proof the key estimates come from applying Meurman’s and Good’s results on $L$-functions associated to holomorphic and Maass cusp forms. One also has to use classical transformation formulas for generalized hypergeometric functions of a unit argument.
LA - eng
KW - microlocal equidistribution theorem; Wigner distributions; congruence subgroups
UR - http://eudml.org/doc/75106
ER -
References
top- [AS] M. ABRAMOWITZ and I. STEGUN, Handbook of Mathematical Functions, AMS 55, 7th ed., 1968.
- [Ba] BAILEY, Generalized hypergeometric series, Cambridge Univ. Press, 1935. Zbl0011.02303JFM61.0406.01
- [CdV] Y. COLIN DE VERDIÈRE, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., 102 (1985), 497-502. Zbl0592.58050MR87d:58145
- [DRS] W. DUKE, Z. RUDNICK and P. SARNAK, Density of Integer Points on Affine Homogeneous Varieties, Duke Math. Jour., 71 (1) (1993), 143-179. Zbl0798.11024MR94k:11072
- [Fa] John, D. FAY, Fourier coefficients for a resolvent of a Fuchsian Group, J. für die Reine und Angew, Math., 293 (1977), 143-203. Zbl0352.30012MR58 #21944
- [Fo] G. B. FOLLAND, Harmonic Analysis in Phase Space, AMS Studies, Princeton Univ. Press, 1989. Zbl0682.43001MR92k:22017
- [G] ANTON GOOD, The square mean of Dirichlet series associated with cusp forms, Mathematika, 29 (1982), 278-295. Zbl0497.10016MR84f:10036
- [GR] I. S. GRADSHTEYN and I. M. RYZHIK, Tables of Integrals, Series and Products, 4th ed., Academic Press, 1980. Zbl0521.33001
- [K] T. KUBOTA, Elementary Theory of Eisenstein Series, Kodansha, Ltd., Tokyo and John Wiley & Sons, New York, 1973. Zbl0268.10012MR55 #2759
- [L] S. LANG, SL2(R), Addison-Wesley, 1975.
- [LS] M. LUO and P. SARNAK, Quantum Ergodicity of Eigenfunctions on PSL2(Z), to appear.
- [Me] Tom MEURMAN, The order of the Maass L-function on the critical line, Colloquia mathematica societatis Janos Bolyai 51. Number theory, Budapest (Hungary), (1987), 325-354. Zbl0724.11029
- [Ro] WALTER ROELCKE, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, Math. Annalen, 167 (1966), 293-337. Zbl0152.07705
- [Sa] P. SARNAK, Horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. Zbl0501.58027
- [Sn1] A.I. SHNIRELMAN, Ergodic Properties of Eigenfunctions, Uspekhi Mat. Nauk, 29 (6) (1974), 181-182.
- [Sn2] A.I. SHNIRELMAN, On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motions (Addendum to V. F. Lazutkin's book), KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, 1993.
- [Ti] E. TITCHMARSH, The Theory of of The Riemann Zeta Function, Oxford, 1951. Zbl0042.07901MR13,741c
- [Z1] S. ZELDITCH, Uniform distribution of Eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour., 55 (1987), 919-941. Zbl0643.58029MR89d:58129
- [Z2] S. ZELDITCH, Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, Journal of Functional Analysis, 97 (1991), 1-49. Zbl0743.58034MR92h:11046
- [Z3] S. ZELDITCH, Selberg Trace Formulas and Equidistribution Theorems for Closed Geodesics and Laplace Eigenfunctions: Finite Area Surfaces, Mem. AMS 90 (N° 465) (1992). Zbl0753.11023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.