Equidistribution of cusp forms on PSL 2 ( 𝐙 ) PSL 2 ( 𝐑 )

Dmitri Jakobson

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 3, page 967-984
  • ISSN: 0373-0956

Abstract

top
We prove a microlocal version of the equidistribution theorem for Wigner distributions associated to cusp forms on PSL 2 ( Z ) PSL 2 ( R ) . This generalizes a recent result of W. Luo and P. Sarnak who prove equidistribution on PSL 2 ( Z ) H .

How to cite

top

Jakobson, Dmitri. "Equidistribution of cusp forms on ${\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})$." Annales de l'institut Fourier 47.3 (1997): 967-984. <http://eudml.org/doc/75252>.

@article{Jakobson1997,
abstract = {We prove a microlocal version of the equidistribution theorem for Wigner distributions associated to cusp forms on $\{\rm PSL\}_2(\{\bf Z\})\backslash \{\rm PSL\}_2(\{\bf R\})$. This generalizes a recent result of W. Luo and P. Sarnak who prove equidistribution on $\{\rm PSL\}_2(\{\bf Z\})\backslash \{\bf H\}$.},
author = {Jakobson, Dmitri},
journal = {Annales de l'institut Fourier},
keywords = {Eisenstein series; cusp forms; Wigner function; -functions; generalized hypergeometric functions; equidistribution theorem; Wigner distributions},
language = {eng},
number = {3},
pages = {967-984},
publisher = {Association des Annales de l'Institut Fourier},
title = {Equidistribution of cusp forms on $\{\rm PSL\}_2(\{\bf Z\})\backslash \{\rm PSL\}_2(\{\bf R\})$},
url = {http://eudml.org/doc/75252},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Jakobson, Dmitri
TI - Equidistribution of cusp forms on ${\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})$
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 967
EP - 984
AB - We prove a microlocal version of the equidistribution theorem for Wigner distributions associated to cusp forms on ${\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})$. This generalizes a recent result of W. Luo and P. Sarnak who prove equidistribution on ${\rm PSL}_2({\bf Z})\backslash {\bf H}$.
LA - eng
KW - Eisenstein series; cusp forms; Wigner function; -functions; generalized hypergeometric functions; equidistribution theorem; Wigner distributions
UR - http://eudml.org/doc/75252
ER -

References

top
  1. [CdV] Y. COLIN DE VERDIÈRE, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys, 102 (1985), 497-502. Zbl0592.58050MR87d:58145
  2. [GR] I.S. GRADSHTEYN and I.M. RYZHIK, Tables of Integrals, Series and Products, Academic Press, 4th edition, 1980. Zbl0521.33001
  3. [Ja94] D. JAKOBSON, Quantum Unique Ergodicity for Eisenstein Series on PSL2(ℤ) PSL2(ℝ), Annales de l'Institut Fourier, 44-5 (1994), 1477-1504. Zbl0820.11040MR96b:11068
  4. [Ja95] D. JAKOBSON, Thesis, Princeton University, 1995. 
  5. [Kuz] N. KUZNETSOV, Peterson's conjecture for cusp forms of weight zero and Linnik's conjecture; sums of Kloosterman sums, Mat. Sb., 111 (1980), 334-383. Zbl0427.10016MR81m:10053
  6. [LS] M. LUO and P. SARNAK. Quantum Ergodicity of Eigenfunctions on PSL2(ℤ), IHES Publ., 81 (1995), 207-237. Zbl0852.11024
  7. [MOS] W. MAGNUS, F. OBERHETTINGER and R.P. SONI, Formulas and theorems for the special functions of mathematical physics, Springer, 1966. Zbl0143.08502MR38 #1291
  8. [Sn74] A.I. SHNIRELMAN, Ergodic Properties of Eigenfunctions, Uspekhi Mat. Nauk, 29-6 (1974), 181-182. 
  9. [Sn93] A.I. SHNIRELMAN, On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motions, Addendum to V. F. Lazutkin's book KAM Theory and Semiclassical Approximations, Springer, 1993. 
  10. [S1] J. SLATER, Generalized hypergeometric functions, Cambridge Univ. Press, 1966. Zbl0135.28101
  11. [Ze87] S. ZELDITCH, Uniform distribution of Eigenfunctions on compact hyperbolic surfaces, Duke Math. Journal, 55 (1987), 919-941. Zbl0643.58029MR89d:58129
  12. [Ze91] S. ZELDITCH, Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, Jour. of Funct. Analysis, 97 (1991), 1-49. Zbl0743.58034MR92h:11046
  13. [Ze92] S. ZELDITCH, Selberg Trace Formulas and Equidistribution Theorems for Closed Geodesics and Laplace Eigenfunctions: Finite Area Surfaces, Mem. AMS, 90 (No. 465), 1992. Zbl0753.11023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.