Vecteurs propres de matrices de Jacobi

Michèle Audin

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 5, page 1505-1517
  • ISSN: 0373-0956

Abstract

top
It is shown that the set of symmetric tridiagonal periodic Jacobi matrices of given spectrum has a preferred tangent vector field, constructed using the eigenvectors of the matrices and the Jacobian of a hyperelliptic curve. It turns out that this preferred vector field is the infinitesimal operator of the celebrated periodic Toda flow.

How to cite

top

Audin, Michèle. "Vecteurs propres de matrices de Jacobi." Annales de l'institut Fourier 44.5 (1994): 1505-1517. <http://eudml.org/doc/75107>.

@article{Audin1994,
abstract = {On montre que l’ensemble des matrices tridiagonales périodiques symétriques de spectre fixé possède une direction tangente privilégiée, construite à l’aide des vecteurs propres des matrices et de la jacobienne d’une courbe hyperelliptique. Il se trouve que cette direction est celle du célèbre flot de Toda périodique.},
author = {Audin, Michèle},
journal = {Annales de l'institut Fourier},
keywords = {integrable systems; Toda lattices; Jacobi matrices; Lax equations; real Abelian varieties},
language = {fre},
number = {5},
pages = {1505-1517},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vecteurs propres de matrices de Jacobi},
url = {http://eudml.org/doc/75107},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Audin, Michèle
TI - Vecteurs propres de matrices de Jacobi
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1505
EP - 1517
AB - On montre que l’ensemble des matrices tridiagonales périodiques symétriques de spectre fixé possède une direction tangente privilégiée, construite à l’aide des vecteurs propres des matrices et de la jacobienne d’une courbe hyperelliptique. Il se trouve que cette direction est celle du célèbre flot de Toda périodique.
LA - fre
KW - integrable systems; Toda lattices; Jacobi matrices; Lax equations; real Abelian varieties
UR - http://eudml.org/doc/75107
ER -

References

top
  1. [1] M. ADLER, P. VANMOERBEKE, The Toda lattice, Dynkin diagrams, singularities and Abelian varieties, Invent. Math., 103 (1991), 223-278. Zbl0735.14031MR91m:14071
  2. [2] H. LANGE, Ch. BIRKENHAKE, Complex Abelian varieties, Grundlehren der math. Wissenschaften, Springer, 1992. Zbl0779.14012
  3. [3] P. VANMOERBEKE, D. MUMFORD, The spectrum of difference operators and algebraic curves, Acta Math., 143 (1979), 93-154. Zbl0502.58032MR80e:58028
  4. [4] A.G. REYMAN, M.A. SEMENOV-TIAN-SHANSKY, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II, Invent. Math., 63 (1981), 423-432. Zbl0442.58016MR82k:58049
  5. [5] P. VANHAECKE, Linearising two-dimensional integrable systems and the construction of action-angle variables, Math. Z., 211 (1992), 265-313. Zbl0758.58011MR93k:58125

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.