Localisation pour des opérateurs de Schrödinger aléatoires dans : un modèle semi-classique
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 1, page 265-316
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Be] YU. M. BEREZANSKII, On expansion in eigenfunctions of self-adjoint operators, Ukrain. Math. Zh., 11 (1959), 16-24, English transl. in Amer. Math. Soc. Trans. (2), 93 (1970). Zbl0206.13404
- [Ca] U. CARLSSON, An infinite number of wells in the semi-classical limit, Asympt. Anal., vol. 3 (1990), 189-214. Zbl0727.35094MR91i:35134
- [C] R. CARMONA, Exponential localization in one dimensional disordered systems, Duke Math. Jour., 49 (1982), 191-213. Zbl0491.60058MR84j:82082
- [C-L] R. CARMONA, J. LACROIX, Spectral theory of random Schrödinger operators, Birkhäuser, Boston Basel Berlin, 1990. Zbl0717.60074
- [Co-His] J.M. COMBES, P.D. HISLOP, Some transport and spectral properties of disordered media, Schrödinger operators: the quantum mechanical many-body problem, LNP 403 (E. Balslev, eds.) Proceedings, Aarhus, Denmark 1991, Springer, Berlin-Heidelberg-New-York (1992), 16-47. Zbl0833.47058MR93k:81047
- [vDK1] H. VON DREYFUS, A. KLEIN, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys., 124 (1989), 285-299. Zbl0698.60051MR90k:82056
- [vDK2] H. VON DREYFUS, A. KLEIN, Localization for random Schrödinger operators with correlated potentials, Commun. Math. Phys., 140 (1991), 133-147. Zbl0734.60070
- [FMSS] J. FRÖHLICH, F. MARTINELLI, E. SCOPPOLA, T. SPENCER, Constructive proof of localization in the Anderson tight binding model, Commun. Math. Phys., 101 (1985), 21-46. Zbl0573.60096MR87a:82047
- [FS] J. FRÖHLICH, T. SPENCER, Absence of diffusion in the Anderson tight binding model, Commun. Math. Phys., 88 (1983), 151-184. Zbl0519.60066
- [GMP] Ya. GOL'DSHEID, S. MOLCHANOV, L. PASTUR, Pure point spectrum of stochastic one dimensional Schrödinger operators, Funct. Anal. Appl., 11 (1977) 1. Zbl0368.34015
- [Gr] V. GRINSHPUN, Point spectrum of random infinite order operators acting on l2(ℤd), Dok. Akad. Nauk Ukraïni, 8 (1992), 18-21 (en russe).
- [HM] H. HOLDEN, F. MARTINELLI, A remark on the absence of diffusion near the bottom of the spectrum for a random Schrödinger operator in L2(Rv), Commun. Math. Phys., 93, (1984) 197-217. Zbl0546.60063MR85m:82103
- [He-Sj] B. HELFFER, J. SJÖSTRAND, Multiple wells in the semi-classical limit 1, Comm. P.D.E, 9 (1984), 337-408. Zbl0546.35053
- [Kl] F. KLOPP, Étude semi-classique d'une perturbation d'un opérateur de Schrödinger périodique, Ann. Inst. Henri Poincaré, sér. Phys. Théor., 55 (1991), 459-509. Zbl0754.35100MR93c:35027
- [KoSi] S. KOTANI, B. SIMON, Localization in general one dimensional systems, II, Commun. Math. Phys., 112 (1987), 103-119. Zbl0637.60080MR89d:81034
- [KuSo] H. KUNZ, B. SOUILLARD, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys., 78 (1980), 201-246. Zbl0449.60048MR83f:39003
- [MS1] F. MARTINELLI, E. SCOPPOLA, Introduction to the mathematical theory of Anderson localization, Riv. Nuovo Cim., 10 (1987), N10.
- [MS2] F. MARTINELLI, E. SCOPPOLA, Remark on the absence of absolutely continuous spectrum for d-dimensional Schrödinger operators with random potential for large disorder and low energy, Commun. Math. Phys., 97 (1985), 465-471. Zbl0603.60060MR87b:81029a
- [O] A. OUTASSOURT, Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique, J. Funct. Anal., 72 (1987), 65-93. Zbl0662.35023MR88k:35049
- [P] L. PASTUR, Spectra of random self-adjoint operators, Russ. Math. Surv., 28 (1973), 1. Zbl0277.60049MR53 #10042
- [PFi] L. PASTUR, A. FIGOTIN, Spectra of random and almost-periodic operators, Springer, Berlin-Heidelberg-New-York, 1992. Zbl0752.47002MR94h:47068
- [Si1] B. SIMON, Semi-classical analysis of low lying eigenvalues III. Width of the ground state band in strongly coupled solids, Ann. Phys., 158 (1984), 415-420. Zbl0596.35028MR87h:81045b
- [Si2] B. SIMON, Schrödinger semigroups, Bull. Am. Math. Soc., 7 (1982), 447-526. Zbl0524.35002MR86b:81001a
- [Wa] W.-M. WANG, Exponential decay of green's functions for a class of long range hamiltonians, Commun. Math. Phys., 136 (1991), 35-41. Zbl0726.58032MR92b:81034
- [We] F. WEGNER, Bounds on the density of states in disordered systems, 1981, Z. Phys., B44 (1981), 9-15.