Étude semi-classique d'une perturbation d'un opérateur de Schrödinger périodique

Frédéric Klopp

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 55, Issue: 1, page 459-509
  • ISSN: 0246-0211

How to cite

top

Klopp, Frédéric. "Étude semi-classique d'une perturbation d'un opérateur de Schrödinger périodique." Annales de l'I.H.P. Physique théorique 55.1 (1991): 459-509. <http://eudml.org/doc/76538>.

@article{Klopp1991,
author = {Klopp, Frédéric},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {periodic potential; spectrum; Schrödinger operator; semiclassical limit},
language = {fre},
number = {1},
pages = {459-509},
publisher = {Gauthier-Villars},
title = {Étude semi-classique d'une perturbation d'un opérateur de Schrödinger périodique},
url = {http://eudml.org/doc/76538},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Klopp, Frédéric
TI - Étude semi-classique d'une perturbation d'un opérateur de Schrödinger périodique
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 55
IS - 1
SP - 459
EP - 509
LA - fre
KW - periodic potential; spectrum; Schrödinger operator; semiclassical limit
UR - http://eudml.org/doc/76538
ER -

References

top
  1. [ADH] S. Alama, P. Deift et R. Hempel, Eigenvalue Branches of the Schrôdinger Operator H-λ W in a Gap of σ(H), Comm. Math. Phys., vol. 121, 1989, p. 291- 321. Zbl0676.47032MR985401
  2. [A] S. Agmon, Lectures on Exponential Decay of Solutions of Second Order Elliptic Equation, Princeton University Press, 1982. Zbl0503.35001MR745286
  3. [B] F. Bentosela, Scattering from Impurities in a Crystal., Comm. Math. Phys., vol. 46, 1976, p. 153-166. MR393883
  4. [Bi] M.Sh. Birman, Perturbations of Operators with Periodic Coefficients, Proceedings of the conference Schrödinger Operators: Standard and non-standard, Dubna, 1988. 
  5. [C] J. Callaway, Energy Band Theory, Academic Press, New York/London, 1964. Zbl0121.23303MR162578
  6. [Ca] U. Carlsson, An Infinite Number of Wells in the Semi-Classical limit, Preprint de l'université de Lund, 1989, Asympt. Anal. (à paraître). MR1076447
  7. [DH] P. Deift, R. Hempel, On the Existence of Eigenvalues of the Schrödinger Operator H-λ W in a Gap of σ(H), Comm. Math. Phys., vol. 103, 1986, p. 461- 490. Zbl0594.34022MR832922
  8. [GHKSV] F. Gesztesy, D. Gurarie, H. Holden, M. Klaus, L. Sadun, B. Simon et P. Vogl, Trapping and Cascading of Eigenvalues in the Large Coupling Limit., Com. Math. Phys., vol. 118, 1988, p. 597-634. Zbl0669.35085MR962490
  9. [GS] F. Gesztesy, B. Simon, On a Theorem of Deift and Hempel., Comm. Math. Phys., vol. 116, 1988, p. 503-505. Zbl0647.35063MR937772
  10. [HSj1] B. Helffer, et J. Sjöstrand, Multiple Wells in the Semi-Classical Limit 1, Comm. P.D.E., vol. 9, (4), 1984, p. 337-408. Zbl0546.35053MR740094
  11. [HSj2] B. Helffer, J. Sjöstrand, Puits multiples en limite semi-classique 2. Interaction moléculaire. Perturbations, Annales Inst. Henri Poincaré, Phys. Théor., vol. 42, (2), 1985, p.127-212. Zbl0595.35031MR798695
  12. [HSj3] B. Helffer et J. Sjöstrand, Effet tunnel pour l'opérateur de Schrödinger semiclassique I., Actes des Journées des E.D.P., Saint-Jean-de-Monts, 1985. Zbl0607.35026
  13. [K] M. Klaus, Some Applications of the Birman-Schwinger Principle., Helv. Phys. Acta, vol. 55, 1982, p. 49-68. MR674865
  14. [KS] M. Klaus et B. Simon, Coupling Constant Thresholds in Non Relativistic Quantum Mechanics., Ann. Phys., vol. 130, 1980, p. 251-281. Zbl0455.35112MR610664
  15. [LL] L. Landau et E. Lifschitz, Mécanique quantique, théorie non relativiste, Editions MIR, Moscou, 1966. Zbl0144.47605
  16. [O] A. Outassourt, Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique, J. Funct. Anal., vol. 72, 1987, p. 65-93. Zbl0662.35023MR883504
  17. [P] A. Persson, Bounds for the Discrete Part of the Spectrum of a Semi-Bounded Schrôdinger Operator, Math. Scand., vol. 8, 1960, p. 143-153. Zbl0145.14901MR133586
  18. [S1] B. Simon, On the Absorption of Eigenvalues by Continuous Spectra in Regular Perturbation Problems., J. Funct. Anal., vol. 25, 1977, p. 338-344. Zbl0363.47014MR445317
  19. [S2] B. Simon, Semi-Classical Analysis of Low Eigenvalues I. Nondegenerate Minima: Asymptotic Expansion., Annales Inst. Henri Poincaré, Phys. Théor., vol. 38, (3), 1983, p. 295-307. Zbl0526.35027MR708966
  20. [S3] B. Simon, Semi-Classical Analysis of Low Lying Eigenvalues II. Tunneling., Ann. Math., vol. 120, 1984, p. 89-118. Zbl0626.35070MR750717
  21. [S4] B. Simon, Semi-Classical Analysis of Low Lying Eigenvalues III. Width of the Ground State Band in Strongly Coupled Solids., Ann. Phys., vol. 158, (2), 1984, p. 415-420. Zbl0596.35028MR772619
  22. [S5] B. Simon, The Bound State of a Weakly Coupled Schrôdinger Operator in One or Two Dimensions., Ann. Phys., vol. 97, 1976, p. 279-288. Zbl0325.35029MR404846
  23. [Sj] J. Sjöstrand, Microlocal Analysis for the Periodic Magnetic Schrôdinger Equation and Related Questions, C.I.M.E. Lectures, Été 1989, L.N.M. Springer (à paraître). MR1178559
  24. [Sk] M.M. Skriganov, Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators., Proc. the Steklov Inst. Math., vol. 2, 1987. Zbl0615.47004MR905202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.