The asymptotics of spherical functions and the central limit theorem on symmetric cones

Genkai Zhang

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 2, page 565-575
  • ISSN: 0373-0956

Abstract

top
We prove a central limit theorem for certain invariant random variables on the symmetric cone in a formally real Jordan algebra. This extends form the previous results of Richards and Terras on the cone of real positive definite n × n matrices.

How to cite

top

Zhang, Genkai. "The asymptotics of spherical functions and the central limit theorem on symmetric cones." Annales de l'institut Fourier 45.2 (1995): 565-575. <http://eudml.org/doc/75129>.

@article{Zhang1995,
abstract = {We prove a central limit theorem for certain invariant random variables on the symmetric cone in a formally real Jordan algebra. This extends form the previous results of Richards and Terras on the cone of real positive definite $n\times n$ matrices.},
author = {Zhang, Genkai},
journal = {Annales de l'institut Fourier},
keywords = {symmetric cones; formally real Jordan algebras; spherical functions; central limit theorems; symmetric spaces},
language = {eng},
number = {2},
pages = {565-575},
publisher = {Association des Annales de l'Institut Fourier},
title = {The asymptotics of spherical functions and the central limit theorem on symmetric cones},
url = {http://eudml.org/doc/75129},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Zhang, Genkai
TI - The asymptotics of spherical functions and the central limit theorem on symmetric cones
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 565
EP - 575
AB - We prove a central limit theorem for certain invariant random variables on the symmetric cone in a formally real Jordan algebra. This extends form the previous results of Richards and Terras on the cone of real positive definite $n\times n$ matrices.
LA - eng
KW - symmetric cones; formally real Jordan algebras; spherical functions; central limit theorems; symmetric spaces
UR - http://eudml.org/doc/75129
ER -

References

top
  1. [A] J. ARAZY, Personal communication. 
  2. [BK] H. BRAUN and M. KOECHER, Jordan-Algebren, Springer, Berlin, Heidelberg, New York, 1966. Zbl0145.26001MR34 #4310
  3. [FK] J. FARAUT and A. KORANYI, Function spaces and reproducing kernels on bounded symmetric domains, J. Func. Anal., 89 (1990), 64-89. Zbl0718.32026MR90m:32049
  4. [G1] P. GRACZYK, A central limit theorem on the space of positive definite symmetric matrices, Ann. Inst. Fourier, 42-1,2 (1992), 857-874. Zbl0736.60025MR93m:60023
  5. [G2] P. GRACZYK, Dispersions and a central limit theorem, preprint. Zbl0829.43002
  6. [H1] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, London, 1978. Zbl0451.53038
  7. [H2] S. HELGASON, Groups and geometric analysis, Academic Press, London, 1984. Zbl0543.58001
  8. [KS] B. KOSTANT and S. SAHI, The Capelli Identity, Tube Domains, and the Generalized Laplace Transform, Adv. Math., 87 (1991), 71-92. Zbl0748.22008
  9. [Ku] H. B. KUSHNER, The linearization of the product of two zonal polynomials, SIAM J. Math. Anal., 19 (1988), 686-717. Zbl0642.33024MR89e:33026
  10. [L] O. LOOS, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977. Zbl0228.32012
  11. [M] R. J. MURIHEAD, Aspects of multivariate statistical theory, John Wiley & Sons, New-York, 1982. Zbl0556.62028
  12. [R] D. St. P. RICHARDS, The central limit theorem on spaces of positive definite matrices, J. Multivariate Anal., 23 (1987), 13-36. 
  13. [St] R. P. STANLEY, Some Combinatorial Properties of Jack Symmetric Functions, Adv. Math., 77 (1989), 76-115. Zbl0743.05072MR90g:05020
  14. [T1] A. TERRAS, Harmonic analysis on symmetric spaces and applications, II, Springer-Verlag, New-York, 1985. Zbl0574.10029MR87f:22010
  15. [T2] A. TERRAS, Asymptotics of special functions and the central limit theorem on the space Pn of positive n x n matrices, J. Multivariate Anal., 23 (1987) 13-36. Zbl0627.43009MR88j:43006
  16. [UU] A. UNTERBERGER and H. UPMEIER, Berezin transform and invariant differential operators, preprint. Zbl0843.32019
  17. [U1] H. UPMEIER, Jordan algebras in analysis, operator theory, and quantum mechanics, Regional conference series in mathematics, n° 67, Amer. Math. Soc., 1987. Zbl0608.17013
  18. [U2] H. UPMEIER, Toeplitz operators on bounded symmetric domains, Tran. Amer. Math. Soc., 280 (1983), 221-237. Zbl0527.47019MR85g:47042
  19. [Vr] L. VRETARE, Elementary spherical functions on symmetric spaces, Math. Scand., 39 (1976), 343-358. Zbl0387.43009MR56 #6289
  20. [Z] G. ZHANG, Some recurrence formula for spherical polynomials on tube domains, Trans. Amer. Math. Soc., to appear. Zbl0839.22019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.