A central limit theorem on the space of positive definite symmetric matrices

Piotr Graczyk

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 4, page 857-874
  • ISSN: 0373-0956

Abstract

top
A central limit theorem is proved on the space 𝒫 n of positive definite symmetric matrices. To do this, some natural analogs of the mean and dispersion on 𝒫 n are defined and investigated. One uses a Taylor expansion of the spherical functions on 𝒫 n .

How to cite

top

Graczyk, Piotr. "A central limit theorem on the space of positive definite symmetric matrices." Annales de l'institut Fourier 42.4 (1992): 857-874. <http://eudml.org/doc/74976>.

@article{Graczyk1992,
abstract = {A central limit theorem is proved on the space $\{\cal P\}_ n$ of positive definite symmetric matrices. To do this, some natural analogs of the mean and dispersion on $\{\cal P\}_ n$ are defined and investigated. One uses a Taylor expansion of the spherical functions on $\{\cal P\}_ n$.},
author = {Graczyk, Piotr},
journal = {Annales de l'institut Fourier},
keywords = {central limit theorem; spherical functions; symmetric spaces},
language = {eng},
number = {4},
pages = {857-874},
publisher = {Association des Annales de l'Institut Fourier},
title = {A central limit theorem on the space of positive definite symmetric matrices},
url = {http://eudml.org/doc/74976},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Graczyk, Piotr
TI - A central limit theorem on the space of positive definite symmetric matrices
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 857
EP - 874
AB - A central limit theorem is proved on the space ${\cal P}_ n$ of positive definite symmetric matrices. To do this, some natural analogs of the mean and dispersion on ${\cal P}_ n$ are defined and investigated. One uses a Taylor expansion of the spherical functions on ${\cal P}_ n$.
LA - eng
KW - central limit theorem; spherical functions; symmetric spaces
UR - http://eudml.org/doc/74976
ER -

References

top
  1. [1] J. FARAUT, Dispersion d'une mesure de probabilité sur SL(2,ℝ) biinvariante par SO(2,ℝ) et théorème de la limite centrale, exposé Oberwolfach, 1975. 
  2. [2] J. FARAUT, A. KORANYI, Jordan Algebras, Symmetric Cones and Symmetric Domains, to appear. 
  3. [3] R. GANGOLLI, Isotropic infinitely divisible measures on symmetric spaces, Acta Math., 111 (1964), 213-246. Zbl0154.43804MR28 #4557
  4. [4] S. HELGASON, Groups and Geometric Analysis, Academic Press, New York, 1984. Zbl0543.58001
  5. [5] G.A. HUNT, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc., 81 (1956), 264-293. Zbl0073.12402MR18,54a
  6. [6] F.I. KARPELEVICH, V.N. TUTUBALIN, M.G. SHUR, Limit theorems for the compositions of distributions in the Lobachevsky plane and space, Theory Prob. Appl., 4 (1959), 399-402. Zbl0107.35603
  7. [7] B. KOSTANT, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup., 6 (1973), 413-455. Zbl0293.22019MR51 #806
  8. [8] D.St.P. RICHARDS, The Central Limit Theorem on Spaces of Positive Definite Matrices, J. Multivariate Anal., 29 (1989), 326-332. Zbl0681.60026MR91a:60031
  9. [9] A. TERRAS, Noneuclidean Harmonic Analysis, the Central Limit Theorem and Long Transmission Lines with Random Inhomogeneities, J. Multivariate Anal., 15 (1984), 261-276. Zbl0551.60022MR86k:43009
  10. [10] A. TERRAS, Asymptotics of Special Functions and the Central Limit Theorem on the Space Pn of Positive n × n Matrices, J. Multivariate Anal., 23 (1987), 13-36. Zbl0627.43009MR88j:43006
  11. [11] A. TERRAS, Harmonic Analysis on Symmetric Spaces and Applications II, Springer-Verlag, New York, 1988. Zbl0668.10033MR89k:22017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.