Sharp -weighted Sobolev inequalities
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 809-824
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPérez, Carlos. "Sharp $L^p$-weighted Sobolev inequalities." Annales de l'institut Fourier 45.3 (1995): 809-824. <http://eudml.org/doc/75139>.
@article{Pérez1995,
abstract = {We prove sharp weighted inequalities of the form\begin\{\}\int \_\{\{\bf R\}^n\}\vert f(x)\vert ^p v(x)dx\le C\int \_\{\{\bf R\}^n\}\vert q(D)(f)(x)\vert ^p N(v)(x)dx\end\{\}where $q(D)$ is a differential operator and $N$ is a combination of maximal type operator related to $q(D)$ and to $p$.},
author = {Pérez, Carlos},
journal = {Annales de l'institut Fourier},
keywords = {weighted inequalities; Sobolev inequalities; fractional integrals; maximal type operator},
language = {eng},
number = {3},
pages = {809-824},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sharp $L^p$-weighted Sobolev inequalities},
url = {http://eudml.org/doc/75139},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Pérez, Carlos
TI - Sharp $L^p$-weighted Sobolev inequalities
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 809
EP - 824
AB - We prove sharp weighted inequalities of the form\begin{}\int _{{\bf R}^n}\vert f(x)\vert ^p v(x)dx\le C\int _{{\bf R}^n}\vert q(D)(f)(x)\vert ^p N(v)(x)dx\end{}where $q(D)$ is a differential operator and $N$ is a combination of maximal type operator related to $q(D)$ and to $p$.
LA - eng
KW - weighted inequalities; Sobolev inequalities; fractional integrals; maximal type operator
UR - http://eudml.org/doc/75139
ER -
References
top- [A] D. ADAMS, Weighted nonlinear potential theory, Trans. Amer. Math. Soc., 297 (1986), 73-94. Zbl0656.31012MR88m:31011
- [AP] D. ADAMS and M. PIERRE, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41-1 (1991), 117-135. Zbl0741.35012MR92m:35074
- [CWW] S. Y. A. CHANG, J. M. WILSON and T. H. WOLFF, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helvetici, 60 (1985), 217-286. Zbl0575.42025MR87d:42027
- [CS] S. CHANILLO and E. SAWYER, Unique continuation for Δ + v and the Fefferman-Phong class, Trans. Math. Soc., 318 (1990), 275-300. Zbl0702.35034MR90f:35050
- [CW] S. CHANILLO and R. WHEEDEN, Lp estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. Zbl0578.46024MR87d:42028
- [CR] F. CHIARENZA and A. RUIZ, Uniform L2-weighted Sobolev inequalities, Trans. Amer. Math. Soc., 318 (1990), 275-300.
- [F] C. FEFFERMAN, The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. Zbl0526.35080MR85f:35001
- [FS1] C. FEFFERMAN and E. M. STEIN, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115. Zbl0222.26019MR44 #2026
- [GCRdF] J. GARCIA-CUERVA and J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North Holland Math. Studies, 116, North Holland, Amsterdam, 1985. Zbl0578.46046MR87d:42023
- [LN] R. LONG and F. NIE, Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators, Lecture Notes in Mathematics, 1494 (1990), 131-141. Zbl0786.46034MR94c:46066
- [Ma] V. G. MAZ'YA, Sobolev spaces, Springer-Verlag, Berlin, 1985. Zbl0727.46017MR87g:46056
- [O] R. O'NEIL, Integral transforms and tensor products on Orlicz spaces and Lp,q spaces, J. d'Anal. Math., 21 (1968), 4-276. Zbl0182.16703MR58 #30125
- [P1] C. PÉREZ, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights, to appear in the Proceedings of the London Mathematical Society. Zbl0829.42019
- [P2] C. PÉREZ, Weighted norm inequalities for singular integral operators, J. of the London Math. Soc. (2), 49 (1994), 296-308. Zbl0797.42010MR94m:42037
- [P3] C. PÉREZ, Two weighted norm inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J., 43 (1994). Zbl0809.42007MR95m:42028
- [S1] E. T. SAWYER, Weighted norm inequalities for fractional maximal operators, Proc. C.M.S., 1 (1981), 283-309. Zbl0546.42018MR83k:42020a
- [S2] E. T. SAWYER, A characterization of two weight norm inequalities for fractional fractional and Poisson integrals, Trans. Amer. Math. Soc., 308 (1988), 533-545. Zbl0665.42023MR89d:26009
- [SW] E. T. SAWYER and R. L. WHEEDEN, Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. Zbl0783.42011MR94i:42024
- [St1] E. M. STEIN, Note on the class L log L, Studia Math., 32 (1969), 305-310. Zbl0182.47803MR40 #799
- [St2] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970). Zbl0207.13501MR44 #7280
- [Wil] J. M. WILSON, Weighted norm inequalities for the continuos square functions, Trans. Amer. Math. Soc., 314 (1989), 661-692. Zbl0689.42016MR91e:42025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.