Sharp L p -weighted Sobolev inequalities

Carlos Pérez

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 809-824
  • ISSN: 0373-0956

Abstract

top
We prove sharp weighted inequalities of the form R n | f ( x ) | p v ( x ) d x C R n | q ( D ) ( f ) ( x ) | p N ( v ) ( x ) d x where q ( D ) is a differential operator and N is a combination of maximal type operator related to q ( D ) and to p .

How to cite

top

Pérez, Carlos. "Sharp $L^p$-weighted Sobolev inequalities." Annales de l'institut Fourier 45.3 (1995): 809-824. <http://eudml.org/doc/75139>.

@article{Pérez1995,
abstract = {We prove sharp weighted inequalities of the form\begin\{\}\int \_\{\{\bf R\}^n\}\vert f(x)\vert ^p v(x)dx\le C\int \_\{\{\bf R\}^n\}\vert q(D)(f)(x)\vert ^p N(v)(x)dx\end\{\}where $q(D)$ is a differential operator and $N$ is a combination of maximal type operator related to $q(D)$ and to $p$.},
author = {Pérez, Carlos},
journal = {Annales de l'institut Fourier},
keywords = {weighted inequalities; Sobolev inequalities; fractional integrals; maximal type operator},
language = {eng},
number = {3},
pages = {809-824},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sharp $L^p$-weighted Sobolev inequalities},
url = {http://eudml.org/doc/75139},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Pérez, Carlos
TI - Sharp $L^p$-weighted Sobolev inequalities
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 809
EP - 824
AB - We prove sharp weighted inequalities of the form\begin{}\int _{{\bf R}^n}\vert f(x)\vert ^p v(x)dx\le C\int _{{\bf R}^n}\vert q(D)(f)(x)\vert ^p N(v)(x)dx\end{}where $q(D)$ is a differential operator and $N$ is a combination of maximal type operator related to $q(D)$ and to $p$.
LA - eng
KW - weighted inequalities; Sobolev inequalities; fractional integrals; maximal type operator
UR - http://eudml.org/doc/75139
ER -

References

top
  1. [A] D. ADAMS, Weighted nonlinear potential theory, Trans. Amer. Math. Soc., 297 (1986), 73-94. Zbl0656.31012MR88m:31011
  2. [AP] D. ADAMS and M. PIERRE, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41-1 (1991), 117-135. Zbl0741.35012MR92m:35074
  3. [CWW] S. Y. A. CHANG, J. M. WILSON and T. H. WOLFF, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helvetici, 60 (1985), 217-286. Zbl0575.42025MR87d:42027
  4. [CS] S. CHANILLO and E. SAWYER, Unique continuation for Δ + v and the Fefferman-Phong class, Trans. Math. Soc., 318 (1990), 275-300. Zbl0702.35034MR90f:35050
  5. [CW] S. CHANILLO and R. WHEEDEN, Lp estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. Zbl0578.46024MR87d:42028
  6. [CR] F. CHIARENZA and A. RUIZ, Uniform L2-weighted Sobolev inequalities, Trans. Amer. Math. Soc., 318 (1990), 275-300. 
  7. [F] C. FEFFERMAN, The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. Zbl0526.35080MR85f:35001
  8. [FS1] C. FEFFERMAN and E. M. STEIN, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115. Zbl0222.26019MR44 #2026
  9. [GCRdF] J. GARCIA-CUERVA and J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North Holland Math. Studies, 116, North Holland, Amsterdam, 1985. Zbl0578.46046MR87d:42023
  10. [LN] R. LONG and F. NIE, Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators, Lecture Notes in Mathematics, 1494 (1990), 131-141. Zbl0786.46034MR94c:46066
  11. [Ma] V. G. MAZ'YA, Sobolev spaces, Springer-Verlag, Berlin, 1985. Zbl0727.46017MR87g:46056
  12. [O] R. O'NEIL, Integral transforms and tensor products on Orlicz spaces and Lp,q spaces, J. d'Anal. Math., 21 (1968), 4-276. Zbl0182.16703MR58 #30125
  13. [P1] C. PÉREZ, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights, to appear in the Proceedings of the London Mathematical Society. Zbl0829.42019
  14. [P2] C. PÉREZ, Weighted norm inequalities for singular integral operators, J. of the London Math. Soc. (2), 49 (1994), 296-308. Zbl0797.42010MR94m:42037
  15. [P3] C. PÉREZ, Two weighted norm inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J., 43 (1994). Zbl0809.42007MR95m:42028
  16. [S1] E. T. SAWYER, Weighted norm inequalities for fractional maximal operators, Proc. C.M.S., 1 (1981), 283-309. Zbl0546.42018MR83k:42020a
  17. [S2] E. T. SAWYER, A characterization of two weight norm inequalities for fractional fractional and Poisson integrals, Trans. Amer. Math. Soc., 308 (1988), 533-545. Zbl0665.42023MR89d:26009
  18. [SW] E. T. SAWYER and R. L. WHEEDEN, Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. Zbl0783.42011MR94i:42024
  19. [St1] E. M. STEIN, Note on the class L log L, Studia Math., 32 (1969), 305-310. Zbl0182.47803MR40 #799
  20. [St2] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970). Zbl0207.13501MR44 #7280
  21. [Wil] J. M. WILSON, Weighted norm inequalities for the continuos square functions, Trans. Amer. Math. Soc., 314 (1989), 661-692. Zbl0689.42016MR91e:42025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.