Capacitary strong type estimates in semilinear problems

D. Adams; Michel Pierre

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 1, page 117-135
  • ISSN: 0373-0956

Abstract

top
We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures μ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures μ for which the Sobolev space W 2 , p can be imbedded into L p ( μ ) . The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular integrals with A p -weights.

How to cite

top

Adams, D., and Pierre, Michel. "Capacitary strong type estimates in semilinear problems." Annales de l'institut Fourier 41.1 (1991): 117-135. <http://eudml.org/doc/74909>.

@article{Adams1991,
abstract = {We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures $\mu $ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures $\mu $ for which the Sobolev space $W^\{2,p\}$ can be imbedded into $L^p(\mu )$. The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular integrals with $A_p$-weights.},
author = {Adams, D., Pierre, Michel},
journal = {Annales de l'institut Fourier},
keywords = {Sobolev spaces; removable sets; existence; class of weak solutions},
language = {eng},
number = {1},
pages = {117-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Capacitary strong type estimates in semilinear problems},
url = {http://eudml.org/doc/74909},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Adams, D.
AU - Pierre, Michel
TI - Capacitary strong type estimates in semilinear problems
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 117
EP - 135
AB - We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures $\mu $ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures $\mu $ for which the Sobolev space $W^{2,p}$ can be imbedded into $L^p(\mu )$. The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular integrals with $A_p$-weights.
LA - eng
KW - Sobolev spaces; removable sets; existence; class of weak solutions
UR - http://eudml.org/doc/74909
ER -

References

top
  1. [1] D.R. ADAMS, On the existence of capacitary strong types estimates in RN, Arkiv för Matematik, Vol. 14, n° 1 (1976), 125-140 Zbl0325.31008MR54 #5822
  2. [2] D.R. ADAMS, Lectures on Lp-potential theory, Umea Univ. report, 2 (1981) 
  3. [3] D.R. ADAMS, J.C. POLKING, The equivalence of two definitions of capacity, Proc. of A.M.S., 37 (1973), 529-534. Zbl0251.31005MR48 #6451
  4. [4] P. BARAS, M. PIERRE, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier, Grenoble, 34-1 (1984), 185-206. Zbl0519.35002MR86j:35063
  5. [5] P. BARAS, M. PIERRE, Critère d'existence des solutions positives pour des équations semi-linéaires non monotones, Ann. I.H.P., 2 n° 3 (1985), 185-212 Zbl0599.35073MR87j:45032
  6. [6] R.R. COIFMAN, C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, Studia Mathematica, 51 (1974), 241-250. Zbl0291.44007MR50 #10670
  7. [7] D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1983), 2nd édition. Zbl0562.35001MR86c:35035
  8. [8] K. HANSSON, Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77-102. Zbl0437.31009MR81j:31007
  9. [9] L.I. HEDBERG, On certain convolution inequalities, Proc. of A.M.S., 36, n° 2 (1972), 505-510. Zbl0283.26003MR47 #794
  10. [10] V.G. MAZ'YA, On some integral inequalities for functions of several variables, Problems in Math. Analysis, Leningrad n° 3 (1973), (Russian). 
  11. [11] V.G. MAZ'YA, T.O. SHAPOSHNIKOVA, Theory of multipliers spaces of differentiable functions, Monographes and Studies in Math., 23, Pitman. Zbl0645.46031MR87j:46074
  12. [12] N.G. MEYERS, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292 Zbl0242.31006MR43 #3474
  13. [13] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans, A.M.S., 165 (1972), 207-226. Zbl0236.26016MR45 #2461
  14. [14] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Pisa, 13 (1959), 115-162. Zbl0088.07601MR22 #823
  15. [15] M. PIERRE, Problèmes semi-linéaires avec données mesures, Séminaires Goulaouic-Schwartz, Ecole Polytechnique, exposé n° XIII, 1983. Zbl0533.35039MR85k:35089
  16. [16] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton N.J. (1970). Zbl0207.13501MR44 #7280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.