Capacitary strong type estimates in semilinear problems
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 1, page 117-135
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAdams, D., and Pierre, Michel. "Capacitary strong type estimates in semilinear problems." Annales de l'institut Fourier 41.1 (1991): 117-135. <http://eudml.org/doc/74909>.
@article{Adams1991,
abstract = {We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures $\mu $ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures $\mu $ for which the Sobolev space $W^\{2,p\}$ can be imbedded into $L^p(\mu )$. The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular integrals with $A_p$-weights.},
author = {Adams, D., Pierre, Michel},
journal = {Annales de l'institut Fourier},
keywords = {Sobolev spaces; removable sets; existence; class of weak solutions},
language = {eng},
number = {1},
pages = {117-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Capacitary strong type estimates in semilinear problems},
url = {http://eudml.org/doc/74909},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Adams, D.
AU - Pierre, Michel
TI - Capacitary strong type estimates in semilinear problems
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 117
EP - 135
AB - We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures $\mu $ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures $\mu $ for which the Sobolev space $W^{2,p}$ can be imbedded into $L^p(\mu )$. The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular integrals with $A_p$-weights.
LA - eng
KW - Sobolev spaces; removable sets; existence; class of weak solutions
UR - http://eudml.org/doc/74909
ER -
References
top- [1] D.R. ADAMS, On the existence of capacitary strong types estimates in RN, Arkiv för Matematik, Vol. 14, n° 1 (1976), 125-140 Zbl0325.31008MR54 #5822
- [2] D.R. ADAMS, Lectures on Lp-potential theory, Umea Univ. report, 2 (1981)
- [3] D.R. ADAMS, J.C. POLKING, The equivalence of two definitions of capacity, Proc. of A.M.S., 37 (1973), 529-534. Zbl0251.31005MR48 #6451
- [4] P. BARAS, M. PIERRE, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier, Grenoble, 34-1 (1984), 185-206. Zbl0519.35002MR86j:35063
- [5] P. BARAS, M. PIERRE, Critère d'existence des solutions positives pour des équations semi-linéaires non monotones, Ann. I.H.P., 2 n° 3 (1985), 185-212 Zbl0599.35073MR87j:45032
- [6] R.R. COIFMAN, C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, Studia Mathematica, 51 (1974), 241-250. Zbl0291.44007MR50 #10670
- [7] D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1983), 2nd édition. Zbl0562.35001MR86c:35035
- [8] K. HANSSON, Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77-102. Zbl0437.31009MR81j:31007
- [9] L.I. HEDBERG, On certain convolution inequalities, Proc. of A.M.S., 36, n° 2 (1972), 505-510. Zbl0283.26003MR47 #794
- [10] V.G. MAZ'YA, On some integral inequalities for functions of several variables, Problems in Math. Analysis, Leningrad n° 3 (1973), (Russian).
- [11] V.G. MAZ'YA, T.O. SHAPOSHNIKOVA, Theory of multipliers spaces of differentiable functions, Monographes and Studies in Math., 23, Pitman. Zbl0645.46031MR87j:46074
- [12] N.G. MEYERS, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292 Zbl0242.31006MR43 #3474
- [13] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans, A.M.S., 165 (1972), 207-226. Zbl0236.26016MR45 #2461
- [14] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Pisa, 13 (1959), 115-162. Zbl0088.07601MR22 #823
- [15] M. PIERRE, Problèmes semi-linéaires avec données mesures, Séminaires Goulaouic-Schwartz, Ecole Polytechnique, exposé n° XIII, 1983. Zbl0533.35039MR85k:35089
- [16] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton N.J. (1970). Zbl0207.13501MR44 #7280
Citations in EuDML Documents
top- Carlos Pérez, Sharp -weighted Sobolev inequalities
- Yves Rakotondratsimba, A two-weight inequality for the Bessel potential operator
- Nathalie Grenon, Existence results for semilinear elliptic equations with small measure data
- Verbitsky, Igor E., Superlinear equations, potential theory and weighted norm inequalities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.