Zeta functions of Jordan algebras representations

Dehbia Achab

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1283-1303
  • ISSN: 0373-0956

Abstract

top
This work is about a generalization of Kœcher’s zeta function. Let V be an Euclidean simple Jordan algebra of dimension n and rank m , E an Euclidean space of dimension N , ϕ a regular self-adjoint representation of V in E , Q the quadratic form associated to ϕ , Ω the symmetric cone associated to V and G ( Ω ) its automorphism group G ( Ω ) = { g G L ( V ) | g ( Ω ) = Ω } . ( H 1 ) Assume that V and E have Q -structures V Q and E Q respectively and ϕ is defined over Q . Let L be a lattice in E Q . The zeta series associated to ϕ and L is defined by ζ L ( s ) = l Γ L ' [ det ( Q ( l ) ) ] - s , s C where L ' = { l L | det ( Q ( l ) ) 0 } , Γ is some arithmetic subgroup of G L ( E ) . ( H 2 ) Assume that V Q is split, which means that its rank equals its primitive rank. The fundamental results are: 1. Under the assumptions ( H 1 ) and ( H 2 ) and using reduction theory (Siegel sets), we show that the zeta series ζ L ( s ) converges absolutely for Re ( s ) > N 2 m . 2. ζ L admits an analytic continuation as a meromorphic function on the whole plane C and satisfies to a functional equation similar to that of Riemann’s zeta function.

How to cite

top

Achab, Dehbia. "Zeta functions of Jordan algebras representations." Annales de l'institut Fourier 45.5 (1995): 1283-1303. <http://eudml.org/doc/75160>.

@article{Achab1995,
abstract = {This work is about a generalization of Kœcher’s zeta function. Let $V$ be an Euclidean simple Jordan algebra of dimension $n$ and rank $m$, $E$ an Euclidean space of dimension $N$, $\phi $ a regular self-adjoint representation of $V$ in $E$, $Q$ the quadratic form associated to $\phi $, $\Omega $ the symmetric cone associated to $V$ and $G(\Omega )$ its automorphism group\begin\{\}G(\Omega )=\lbrace g\in GL(V)\vert g(\Omega )=\Omega \rbrace .\end\{\}($H_1$) Assume that $V$ and $E$ have $\{\bf Q\}$-structures $V_\{\{\bf Q\}\}$ and $E_\{\{\bf Q\}\}$ respectively and $\phi $ is defined over $\{\bf Q\}$. Let $L$ be a lattice in $E_\{\{\bf Q\}\}$. The zeta series associated to $\phi $ and $L$ is defined by\begin\{\}\zeta \_L(s)=\sum \_\{l\in \Gamma \_\circ \backslash L^\{\prime \}\}[\{\rm det\}(Q(l))]^\{-s\},\forall s\in \{\bf C\}\end\{\}where $L^\{\prime \}=\lbrace l\in L\vert \{\rm det\}(Q(l))\ne 0\rbrace $, $\Gamma _\circ $ is some arithmetic subgroup of $GL(E)$. ($H_2$) Assume that $V_\{\{\bf Q\}\}$ is split, which means that its rank equals its primitive rank. The fundamental results are: 1. Under the assumptions ($H_1$) and ($H_2$) and using reduction theory (Siegel sets), we show that the zeta series $\zeta _L(s)$ converges absolutely for $\{\rm Re\}\,(s)&gt;\{N\over 2m\}$. 2. $\zeta _L$ admits an analytic continuation as a meromorphic function on the whole plane $\{\bf C\}$ and satisfies to a functional equation similar to that of Riemann’s zeta function.},
author = {Achab, Dehbia},
journal = {Annales de l'institut Fourier},
keywords = {Jordan algebra; symmetric cone; reductive group; arithmetic group; zeta function},
language = {eng},
number = {5},
pages = {1283-1303},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zeta functions of Jordan algebras representations},
url = {http://eudml.org/doc/75160},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Achab, Dehbia
TI - Zeta functions of Jordan algebras representations
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1283
EP - 1303
AB - This work is about a generalization of Kœcher’s zeta function. Let $V$ be an Euclidean simple Jordan algebra of dimension $n$ and rank $m$, $E$ an Euclidean space of dimension $N$, $\phi $ a regular self-adjoint representation of $V$ in $E$, $Q$ the quadratic form associated to $\phi $, $\Omega $ the symmetric cone associated to $V$ and $G(\Omega )$ its automorphism group\begin{}G(\Omega )=\lbrace g\in GL(V)\vert g(\Omega )=\Omega \rbrace .\end{}($H_1$) Assume that $V$ and $E$ have ${\bf Q}$-structures $V_{{\bf Q}}$ and $E_{{\bf Q}}$ respectively and $\phi $ is defined over ${\bf Q}$. Let $L$ be a lattice in $E_{{\bf Q}}$. The zeta series associated to $\phi $ and $L$ is defined by\begin{}\zeta _L(s)=\sum _{l\in \Gamma _\circ \backslash L^{\prime }}[{\rm det}(Q(l))]^{-s},\forall s\in {\bf C}\end{}where $L^{\prime }=\lbrace l\in L\vert {\rm det}(Q(l))\ne 0\rbrace $, $\Gamma _\circ $ is some arithmetic subgroup of $GL(E)$. ($H_2$) Assume that $V_{{\bf Q}}$ is split, which means that its rank equals its primitive rank. The fundamental results are: 1. Under the assumptions ($H_1$) and ($H_2$) and using reduction theory (Siegel sets), we show that the zeta series $\zeta _L(s)$ converges absolutely for ${\rm Re}\,(s)&gt;{N\over 2m}$. 2. $\zeta _L$ admits an analytic continuation as a meromorphic function on the whole plane ${\bf C}$ and satisfies to a functional equation similar to that of Riemann’s zeta function.
LA - eng
KW - Jordan algebra; symmetric cone; reductive group; arithmetic group; zeta function
UR - http://eudml.org/doc/75160
ER -

References

top
  1. [1] D. ACHAB, Représentations des algèbres de Jordan de rang 2 et fonctions zeta associées, Annales de l'Institut Fourier, Grenoble, 45-2 (1995), 437-451. Zbl0824.11054MR96h:11088
  2. [2] T. ARAKAWA, Dirichlet Series Corresponding to Siegel's Modular Forms, Math. Ann., 238 (1978), 157-173. Zbl0373.10017MR80c:10026
  3. [3] A. ASH, D. MUMFORD, M. RAPOPPORT et Y.S. TAI, Smooth compactifications of locally symmetric varieties. Lie groups : History, frontiers and applications, Math. Sci. Press, 1975. Zbl0334.14007
  4. [4] A. BOREL, Introduction aux groupes arithmétiques, Hermann, Paris, 1969. Zbl0186.33202MR39 #5577
  5. [5] A. BOREL, Linear algebraic groups. Second Enlarged Edition, Springer-Verlag, 1991. Zbl0726.20030MR92d:20001
  6. [6] A. BOREL, Density and maximality of arithmetic subgroups, J. Reine Angw. Math., 224 (1966), 78-89. Zbl0158.03105MR34 #5824
  7. [7] BRAUN et KŒCHER, Jordan-Algebren, Springer, 1966. Zbl0145.26001
  8. [8] J.L. CLERC, Représentations d'une algèbre de Jordan, polynômes invariants et harmoniques de Stiefel, J. Reine Angw. Math., 423 (1992), 47-71. Zbl0749.17042
  9. [9] J. FARAUT et A. KORANYI, Analysis on symmetric cones, Oxford University Press, 1994. Zbl0841.43002MR98g:17031
  10. [10] M. KOECHER, Uber Dirichlet-Reihen mit Funktionalgleichung, J. Reine Angw. Math., 192 (1953), 1-23. Zbl0053.05501MR15,290a
  11. [11] A. KRIEG, Kœcher-Maass-Series for Modular Forms of Quaternions, Manuscripta Math., 66 (1990), 431-451. Zbl0698.10019MR91b:11062
  12. [12] A. KRIEG, Modular Forms on Half-Spaces of Quaternions, Springer-Verlag, 1980. 
  13. [13] H. MAASS, Siegel's Modular Forms and Dirichlet Series, Lect. Notes in Math. 216, Springer-Verlag, 1971. Zbl0224.10028MR49 #8938
  14. [14] M. SATO et T.SHINTANI, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math., 100 (1974), 131-170. Zbl0309.10014MR49 #8969
  15. [15] I. SATAKE, private communication. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.