Zeta functions of Jordan algebras representations
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 5, page 1283-1303
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAchab, Dehbia. "Zeta functions of Jordan algebras representations." Annales de l'institut Fourier 45.5 (1995): 1283-1303. <http://eudml.org/doc/75160>.
@article{Achab1995,
abstract = {This work is about a generalization of Kœcher’s zeta function. Let $V$ be an Euclidean simple Jordan algebra of dimension $n$ and rank $m$, $E$ an Euclidean space of dimension $N$, $\phi $ a regular self-adjoint representation of $V$ in $E$, $Q$ the quadratic form associated to $\phi $, $\Omega $ the symmetric cone associated to $V$ and $G(\Omega )$ its automorphism group\begin\{\}G(\Omega )=\lbrace g\in GL(V)\vert g(\Omega )=\Omega \rbrace .\end\{\}($H_1$) Assume that $V$ and $E$ have $\{\bf Q\}$-structures $V_\{\{\bf Q\}\}$ and $E_\{\{\bf Q\}\}$ respectively and $\phi $ is defined over $\{\bf Q\}$. Let $L$ be a lattice in $E_\{\{\bf Q\}\}$. The zeta series associated to $\phi $ and $L$ is defined by\begin\{\}\zeta \_L(s)=\sum \_\{l\in \Gamma \_\circ \backslash L^\{\prime \}\}[\{\rm det\}(Q(l))]^\{-s\},\forall s\in \{\bf C\}\end\{\}where $L^\{\prime \}=\lbrace l\in L\vert \{\rm det\}(Q(l))\ne 0\rbrace $, $\Gamma _\circ $ is some arithmetic subgroup of $GL(E)$. ($H_2$) Assume that $V_\{\{\bf Q\}\}$ is split, which means that its rank equals its primitive rank. The fundamental results are: 1. Under the assumptions ($H_1$) and ($H_2$) and using reduction theory (Siegel sets), we show that the zeta series $\zeta _L(s)$ converges absolutely for $\{\rm Re\}\,(s)>\{N\over 2m\}$. 2. $\zeta _L$ admits an analytic continuation as a meromorphic function on the whole plane $\{\bf C\}$ and satisfies to a functional equation similar to that of Riemann’s zeta function.},
author = {Achab, Dehbia},
journal = {Annales de l'institut Fourier},
keywords = {Jordan algebra; symmetric cone; reductive group; arithmetic group; zeta function},
language = {eng},
number = {5},
pages = {1283-1303},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zeta functions of Jordan algebras representations},
url = {http://eudml.org/doc/75160},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Achab, Dehbia
TI - Zeta functions of Jordan algebras representations
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1283
EP - 1303
AB - This work is about a generalization of Kœcher’s zeta function. Let $V$ be an Euclidean simple Jordan algebra of dimension $n$ and rank $m$, $E$ an Euclidean space of dimension $N$, $\phi $ a regular self-adjoint representation of $V$ in $E$, $Q$ the quadratic form associated to $\phi $, $\Omega $ the symmetric cone associated to $V$ and $G(\Omega )$ its automorphism group\begin{}G(\Omega )=\lbrace g\in GL(V)\vert g(\Omega )=\Omega \rbrace .\end{}($H_1$) Assume that $V$ and $E$ have ${\bf Q}$-structures $V_{{\bf Q}}$ and $E_{{\bf Q}}$ respectively and $\phi $ is defined over ${\bf Q}$. Let $L$ be a lattice in $E_{{\bf Q}}$. The zeta series associated to $\phi $ and $L$ is defined by\begin{}\zeta _L(s)=\sum _{l\in \Gamma _\circ \backslash L^{\prime }}[{\rm det}(Q(l))]^{-s},\forall s\in {\bf C}\end{}where $L^{\prime }=\lbrace l\in L\vert {\rm det}(Q(l))\ne 0\rbrace $, $\Gamma _\circ $ is some arithmetic subgroup of $GL(E)$. ($H_2$) Assume that $V_{{\bf Q}}$ is split, which means that its rank equals its primitive rank. The fundamental results are: 1. Under the assumptions ($H_1$) and ($H_2$) and using reduction theory (Siegel sets), we show that the zeta series $\zeta _L(s)$ converges absolutely for ${\rm Re}\,(s)>{N\over 2m}$. 2. $\zeta _L$ admits an analytic continuation as a meromorphic function on the whole plane ${\bf C}$ and satisfies to a functional equation similar to that of Riemann’s zeta function.
LA - eng
KW - Jordan algebra; symmetric cone; reductive group; arithmetic group; zeta function
UR - http://eudml.org/doc/75160
ER -
References
top- [1] D. ACHAB, Représentations des algèbres de Jordan de rang 2 et fonctions zeta associées, Annales de l'Institut Fourier, Grenoble, 45-2 (1995), 437-451. Zbl0824.11054MR96h:11088
- [2] T. ARAKAWA, Dirichlet Series Corresponding to Siegel's Modular Forms, Math. Ann., 238 (1978), 157-173. Zbl0373.10017MR80c:10026
- [3] A. ASH, D. MUMFORD, M. RAPOPPORT et Y.S. TAI, Smooth compactifications of locally symmetric varieties. Lie groups : History, frontiers and applications, Math. Sci. Press, 1975. Zbl0334.14007
- [4] A. BOREL, Introduction aux groupes arithmétiques, Hermann, Paris, 1969. Zbl0186.33202MR39 #5577
- [5] A. BOREL, Linear algebraic groups. Second Enlarged Edition, Springer-Verlag, 1991. Zbl0726.20030MR92d:20001
- [6] A. BOREL, Density and maximality of arithmetic subgroups, J. Reine Angw. Math., 224 (1966), 78-89. Zbl0158.03105MR34 #5824
- [7] BRAUN et KCHER, Jordan-Algebren, Springer, 1966. Zbl0145.26001
- [8] J.L. CLERC, Représentations d'une algèbre de Jordan, polynômes invariants et harmoniques de Stiefel, J. Reine Angw. Math., 423 (1992), 47-71. Zbl0749.17042
- [9] J. FARAUT et A. KORANYI, Analysis on symmetric cones, Oxford University Press, 1994. Zbl0841.43002MR98g:17031
- [10] M. KOECHER, Uber Dirichlet-Reihen mit Funktionalgleichung, J. Reine Angw. Math., 192 (1953), 1-23. Zbl0053.05501MR15,290a
- [11] A. KRIEG, Kcher-Maass-Series for Modular Forms of Quaternions, Manuscripta Math., 66 (1990), 431-451. Zbl0698.10019MR91b:11062
- [12] A. KRIEG, Modular Forms on Half-Spaces of Quaternions, Springer-Verlag, 1980.
- [13] H. MAASS, Siegel's Modular Forms and Dirichlet Series, Lect. Notes in Math. 216, Springer-Verlag, 1971. Zbl0224.10028MR49 #8938
- [14] M. SATO et T.SHINTANI, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math., 100 (1974), 131-170. Zbl0309.10014MR49 #8969
- [15] I. SATAKE, private communication.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.