A differential geometric characterization of invariant domains of holomorphy

Gregor Fels

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1329-1351
  • ISSN: 0373-0956

Abstract

top
Let G = K be a complex reductive group. We give a description both of domains Ω G and plurisubharmonic functions, which are invariant by the compact group, K , acting on G by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space M : = G / K . Such an invariant domain Ω with a smooth boundary is Stein if and only if the corresponding domain Ω M M is geodesically convex and the sectional curvature of its boundary S : = Ω M fulfills the condition K S ( E ) K M ( E ) + k ( E , n ) . The term k ( E , n ) is explicitly computable and depends only on the normal vector n and the two dimensional tangent plane E .

How to cite

top

Fels, Gregor. "A differential geometric characterization of invariant domains of holomorphy." Annales de l'institut Fourier 45.5 (1995): 1329-1351. <http://eudml.org/doc/75162>.

@article{Fels1995,
abstract = {Let $G=K^\{\Bbb C\}$ be a complex reductive group. We give a description both of domains $\Omega \subset G$ and plurisubharmonic functions, which are invariant by the compact group, $K$, acting on $G$ by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space $M:=G/K$. Such an invariant domain $\Omega $ with a smooth boundary is Stein if and only if the corresponding domain $\Omega _M\subset M$ is geodesically convex and the sectional curvature of its boundary $S:=\partial \Omega _M$ fulfills the condition $K^S(E)\ge K^M(E)+k(E,n) $. The term $k(E,n)$ is explicitly computable and depends only on the normal vector $n$ and the two dimensional tangent plane $E$.},
author = {Fels, Gregor},
journal = {Annales de l'institut Fourier},
keywords = {complex Lie group; plurisubharmonic function; Riemannian symmetric space; Stein domain},
language = {eng},
number = {5},
pages = {1329-1351},
publisher = {Association des Annales de l'Institut Fourier},
title = {A differential geometric characterization of invariant domains of holomorphy},
url = {http://eudml.org/doc/75162},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Fels, Gregor
TI - A differential geometric characterization of invariant domains of holomorphy
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1329
EP - 1351
AB - Let $G=K^{\Bbb C}$ be a complex reductive group. We give a description both of domains $\Omega \subset G$ and plurisubharmonic functions, which are invariant by the compact group, $K$, acting on $G$ by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space $M:=G/K$. Such an invariant domain $\Omega $ with a smooth boundary is Stein if and only if the corresponding domain $\Omega _M\subset M$ is geodesically convex and the sectional curvature of its boundary $S:=\partial \Omega _M$ fulfills the condition $K^S(E)\ge K^M(E)+k(E,n) $. The term $k(E,n)$ is explicitly computable and depends only on the normal vector $n$ and the two dimensional tangent plane $E$.
LA - eng
KW - complex Lie group; plurisubharmonic function; Riemannian symmetric space; Stein domain
UR - http://eudml.org/doc/75162
ER -

References

top
  1. [BO] W. BARTH, M. OTTE, Invariante holomorphe Funktionen auf reduktiven Liegruppen, Mathematische Annalen, Bd 201 (1973). Zbl0253.32018MR51 #13300
  2. [B] F. BERTELOOT, Fonctions plurisousharmoniques sur SL(2, ℂ) invariantes par un sous-groupe monogène, Journal d'Analyse Mathématique, Vol 48 (1987). Zbl0635.32018MR88k:32048
  3. [ChE] J. CHEEGER, D.J. EBIN, Comparison theorems in Riemannian Geometry, Amsterdam, Oxford, 1975. Zbl0309.53035MR56 #16538
  4. [DoGr] F. DOCQUIER, H. GRAUERT, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Mathematische Annalen, Bd 140 (1960). Zbl0095.28004MR26 #6435
  5. [F] G. FELS, Differentialgeometrische Charakterisierung invarianter Holomorphiegebiete, Dissertation, Essen 1994. Zbl0850.32001
  6. [FH] G. FELS, A.T. HUCKLEBERRY, A Characterisation of K-Invariant Stein Domains in Symmetric Embeddings. Complex analysis und geometry, Plenum Press, New York, 1993. Zbl0790.32030
  7. [GHL] S. GALLOT, D. HULIN, J. LAFONTAINE, Riemannian Geometry, Springer-Verlag, Universitext, New York, Berlin, Heidelberg, Tokyo, 1990. Zbl0716.53001MR91j:53001
  8. [H] P. HEINZNER, Geometric invariant theory on Stein spaces, Mathematische Annalen, Bd 289 (1991). Zbl0728.32010MR92j:32116
  9. [Hel] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978. Zbl0451.53038
  10. [Ho] G. HOCHSCHILD, The Structure of Lie Groups, Holden-Day, Inc. San Francisco, London, Amsterdam, 1965. Zbl0131.02702MR34 #7696
  11. [Las1] M. LASSALE, Sur la transformée de Fourier-Laurent dans un groupe analytique complexe réductif, Ann. Inst. Fourier, 28-1 (1978), 115-138. Zbl0334.32028
  12. [Las2] M. LASSALE, Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symetrique compact, Ann. Scient. Ec. Norm. Sup., 4e série, t. 11 (1978). Zbl0452.43011
  13. [Lo1] J.-J. LOEB, Pseudo-convexité des ouverts invariants et convexité géodésique dans certains espaces symétriques, Séminaire Pierre Lelong - Henri Skoda, 1985. Zbl0595.32024
  14. [Lo2] J.-J. LOEB, Plurisousharmonicité et convexité sur les groups réductifs complexes, Pub. IRMA-Lille, 1986, Vol 2, Nr. VIII. 
  15. [N] R. NARASIMHAN, Complex Analysis in One Variable, Birkhäuser, Boston, Basel, Stuttgart, 1985. Zbl0561.30001MR87h:30001
  16. [R] H. ROSSI, On Envelops of Holomorphy, Communications on Pure and Applied Mathematics, Vol. 16 (1963). Zbl0113.06001MR26 #6436
  17. [Ro] O.S. ROTHAUS, Envelopes of Holomorphy of Domains in Complex Lie Groups. Problems in Analysis, A Symposium in Honor of Salomon Bochner, 1969, Princeton, University Press, 1970. Zbl0212.10801
  18. [Wo] J.A. WOLF, Spaces of Constant Curvature, Publish or Perish, Inc. Wilmington, Delaware (U.S.A.), 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.