A differential geometric characterization of invariant domains of holomorphy
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 5, page 1329-1351
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFels, Gregor. "A differential geometric characterization of invariant domains of holomorphy." Annales de l'institut Fourier 45.5 (1995): 1329-1351. <http://eudml.org/doc/75162>.
@article{Fels1995,
abstract = {Let $G=K^\{\Bbb C\}$ be a complex reductive group. We give a description both of domains $\Omega \subset G$ and plurisubharmonic functions, which are invariant by the compact group, $K$, acting on $G$ by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space $M:=G/K$. Such an invariant domain $\Omega $ with a smooth boundary is Stein if and only if the corresponding domain $\Omega _M\subset M$ is geodesically convex and the sectional curvature of its boundary $S:=\partial \Omega _M$ fulfills the condition $K^S(E)\ge K^M(E)+k(E,n) $. The term $k(E,n)$ is explicitly computable and depends only on the normal vector $n$ and the two dimensional tangent plane $E$.},
author = {Fels, Gregor},
journal = {Annales de l'institut Fourier},
keywords = {complex Lie group; plurisubharmonic function; Riemannian symmetric space; Stein domain},
language = {eng},
number = {5},
pages = {1329-1351},
publisher = {Association des Annales de l'Institut Fourier},
title = {A differential geometric characterization of invariant domains of holomorphy},
url = {http://eudml.org/doc/75162},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Fels, Gregor
TI - A differential geometric characterization of invariant domains of holomorphy
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1329
EP - 1351
AB - Let $G=K^{\Bbb C}$ be a complex reductive group. We give a description both of domains $\Omega \subset G$ and plurisubharmonic functions, which are invariant by the compact group, $K$, acting on $G$ by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space $M:=G/K$. Such an invariant domain $\Omega $ with a smooth boundary is Stein if and only if the corresponding domain $\Omega _M\subset M$ is geodesically convex and the sectional curvature of its boundary $S:=\partial \Omega _M$ fulfills the condition $K^S(E)\ge K^M(E)+k(E,n) $. The term $k(E,n)$ is explicitly computable and depends only on the normal vector $n$ and the two dimensional tangent plane $E$.
LA - eng
KW - complex Lie group; plurisubharmonic function; Riemannian symmetric space; Stein domain
UR - http://eudml.org/doc/75162
ER -
References
top- [BO] W. BARTH, M. OTTE, Invariante holomorphe Funktionen auf reduktiven Liegruppen, Mathematische Annalen, Bd 201 (1973). Zbl0253.32018MR51 #13300
- [B] F. BERTELOOT, Fonctions plurisousharmoniques sur SL(2, ℂ) invariantes par un sous-groupe monogène, Journal d'Analyse Mathématique, Vol 48 (1987). Zbl0635.32018MR88k:32048
- [ChE] J. CHEEGER, D.J. EBIN, Comparison theorems in Riemannian Geometry, Amsterdam, Oxford, 1975. Zbl0309.53035MR56 #16538
- [DoGr] F. DOCQUIER, H. GRAUERT, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Mathematische Annalen, Bd 140 (1960). Zbl0095.28004MR26 #6435
- [F] G. FELS, Differentialgeometrische Charakterisierung invarianter Holomorphiegebiete, Dissertation, Essen 1994. Zbl0850.32001
- [FH] G. FELS, A.T. HUCKLEBERRY, A Characterisation of K-Invariant Stein Domains in Symmetric Embeddings. Complex analysis und geometry, Plenum Press, New York, 1993. Zbl0790.32030
- [GHL] S. GALLOT, D. HULIN, J. LAFONTAINE, Riemannian Geometry, Springer-Verlag, Universitext, New York, Berlin, Heidelberg, Tokyo, 1990. Zbl0716.53001MR91j:53001
- [H] P. HEINZNER, Geometric invariant theory on Stein spaces, Mathematische Annalen, Bd 289 (1991). Zbl0728.32010MR92j:32116
- [Hel] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978. Zbl0451.53038
- [Ho] G. HOCHSCHILD, The Structure of Lie Groups, Holden-Day, Inc. San Francisco, London, Amsterdam, 1965. Zbl0131.02702MR34 #7696
- [Las1] M. LASSALE, Sur la transformée de Fourier-Laurent dans un groupe analytique complexe réductif, Ann. Inst. Fourier, 28-1 (1978), 115-138. Zbl0334.32028
- [Las2] M. LASSALE, Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symetrique compact, Ann. Scient. Ec. Norm. Sup., 4e série, t. 11 (1978). Zbl0452.43011
- [Lo1] J.-J. LOEB, Pseudo-convexité des ouverts invariants et convexité géodésique dans certains espaces symétriques, Séminaire Pierre Lelong - Henri Skoda, 1985. Zbl0595.32024
- [Lo2] J.-J. LOEB, Plurisousharmonicité et convexité sur les groups réductifs complexes, Pub. IRMA-Lille, 1986, Vol 2, Nr. VIII.
- [N] R. NARASIMHAN, Complex Analysis in One Variable, Birkhäuser, Boston, Basel, Stuttgart, 1985. Zbl0561.30001MR87h:30001
- [R] H. ROSSI, On Envelops of Holomorphy, Communications on Pure and Applied Mathematics, Vol. 16 (1963). Zbl0113.06001MR26 #6436
- [Ro] O.S. ROTHAUS, Envelopes of Holomorphy of Domains in Complex Lie Groups. Problems in Analysis, A Symposium in Honor of Salomon Bochner, 1969, Princeton, University Press, 1970. Zbl0212.10801
- [Wo] J.A. WOLF, Spaces of Constant Curvature, Publish or Perish, Inc. Wilmington, Delaware (U.S.A.), 1984.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.