Pieri's formula for flag manifolds and Schubert polynomials

Frank Sottile

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 1, page 89-110
  • ISSN: 0373-0956

Abstract

top
We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri’s formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain intersections of Schubert varieties. This method allows us to compute additional structure constants for the cohomology ring, some of which we express in terms of paths in the Bruhat order on thesymmetric group, which in turn yields an enumerative result about the Bruhat order.

How to cite

top

Sottile, Frank. "Pieri's formula for flag manifolds and Schubert polynomials." Annales de l'institut Fourier 46.1 (1996): 89-110. <http://eudml.org/doc/75177>.

@article{Sottile1996,
abstract = {We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri’s formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain intersections of Schubert varieties. This method allows us to compute additional structure constants for the cohomology ring, some of which we express in terms of paths in the Bruhat order on thesymmetric group, which in turn yields an enumerative result about the Bruhat order.},
author = {Sottile, Frank},
journal = {Annales de l'institut Fourier},
keywords = {multiplication by the class of a special Schubert variety; integral cohomology ring of the flag manifold; Pieri formual; Bruhat order},
language = {eng},
number = {1},
pages = {89-110},
publisher = {Association des Annales de l'Institut Fourier},
title = {Pieri's formula for flag manifolds and Schubert polynomials},
url = {http://eudml.org/doc/75177},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Sottile, Frank
TI - Pieri's formula for flag manifolds and Schubert polynomials
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 1
SP - 89
EP - 110
AB - We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri’s formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain intersections of Schubert varieties. This method allows us to compute additional structure constants for the cohomology ring, some of which we express in terms of paths in the Bruhat order on thesymmetric group, which in turn yields an enumerative result about the Bruhat order.
LA - eng
KW - multiplication by the class of a special Schubert variety; integral cohomology ring of the flag manifold; Pieri formual; Bruhat order
UR - http://eudml.org/doc/75177
ER -

References

top
  1. [1] N. BERGERON, A combinatorial construction of the Schubert polynomials, J. Combin. Theory, Ser. A, 60 (1992), 168-182. Zbl0771.05097MR93i:05138
  2. [2] N. BERGERON and S. BILLEY, RC-Graphs and Schubert polynomials, Experimental Math., 2 (1993), 257-269. Zbl0803.05054MR95g:05107
  3. [3] I. N. BERNSTEIN, I.M. GELFAND, and S. I. GELFAND, Schubert cells and cohomology of the spaces G/P, Russian Mathematical Surveys, 28 (1973), 1-26. Zbl0289.57024MR55 #2941
  4. [4] S. BILLEY, W. JOCKUSH, and R. STANLEY, Some combinatorial properties of Schubert polynomials, J. Algebraic Combinatorics, 2 (1993), 345-374. Zbl0790.05093MR94m:05197
  5. [5] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. Math., 57 (1953), 115-207. Zbl0052.40001MR14,490e
  6. [6] C. CHEVALLEY, Sur les décompositions cellulaires des espaces G/B, in Algebraic Groups and their Generalizations : Classical Methods, American Mathematical Society, (1994), 1-23. Proceedings and Symposia in Pure Mathematics, vol. 56, Part 1. Zbl0824.14042MR95e:14041
  7. [7] M. DEMAZURE, Désingularisation des variétés de Schubert généralisées, Ann. Sc. E.N.S. (4), 7 (1974), 53-88. Zbl0312.14009MR50 #7174
  8. [8] V. DEODHAR, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511. Zbl0563.14023MR86f:20045
  9. [9] C. EHRESMANN, Sur la topologie de certains espaces homogènes, Ann. Math., 35 (1934), 396-443. Zbl0009.32903JFM60.1223.05
  10. [10] S. FOMIN and A. KIRILLOV, Yang-Baxter equation, symmetric functions and Schubert polynomials, Proc. FPSAC 5, Florence, 1993. Zbl0852.05078
  11. [11] S. FOMIN and R. STANLEY, Schubert polynomials and the nilCoxeter algebra, Adv. Math., 103 (1994), 196-207. Zbl0809.05091MR95f:05115
  12. [12] W. FULTON, Intersection Theory, Ergebnisse der Math. 2, Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
  13. [13] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, Joseph Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
  14. [14] H. HILLER, Combinatorics and intersections of Schubert varieties, Comment. Math. Helvetica, 57 (1982), 41-59. Zbl0501.14030MR84b:14028
  15. [15] W. V. D. HODGE and D. PEDOE, Methods of Algebraic Geometry, vol. II, Cambridge University Press, 1952. Zbl0048.14502
  16. [16] S. KLEIMAN, The transversality of a general translate, Comp. Math., 28 (1974), 287-297. Zbl0288.14014MR50 #13063
  17. [17] A. LASCOUX and M.-P. SCHUTZENBERGER, Polynômes de Schubert, C. R. Acad. Sci. Paris, 294 (1982), 447-450. Zbl0495.14031MR83e:14039
  18. [18] A. LASCOUX and M.-P. SCHUTZENBERGER, Symmetry and flag manifolds, in Invariant Theory, (Montecatini, 1982), Springer-Verlag, 1983, 118-144. Lecture Notes in Mathematics 996. Zbl0542.14031MR85e:14073
  19. [19] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. Zbl0487.20007MR84g:05003
  20. [20] I. G. MACDONALD, Notes on Schubert Polynomials, Laboratoire de combinatoire et d'informatique mathématique (LACIM), Université du Québec à Montréal, Montréal, 1991. 
  21. [21] D. MONK, The geometry of flag manifolds, Proc. London Math. Soc., 9 (1959), 253-286. Zbl0096.36201MR21 #5641

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.