Pieri's formula for flag manifolds and Schubert polynomials
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 1, page 89-110
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. BERGERON, A combinatorial construction of the Schubert polynomials, J. Combin. Theory, Ser. A, 60 (1992), 168-182. Zbl0771.05097MR93i:05138
- [2] N. BERGERON and S. BILLEY, RC-Graphs and Schubert polynomials, Experimental Math., 2 (1993), 257-269. Zbl0803.05054MR95g:05107
- [3] I. N. BERNSTEIN, I.M. GELFAND, and S. I. GELFAND, Schubert cells and cohomology of the spaces G/P, Russian Mathematical Surveys, 28 (1973), 1-26. Zbl0289.57024MR55 #2941
- [4] S. BILLEY, W. JOCKUSH, and R. STANLEY, Some combinatorial properties of Schubert polynomials, J. Algebraic Combinatorics, 2 (1993), 345-374. Zbl0790.05093MR94m:05197
- [5] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. Math., 57 (1953), 115-207. Zbl0052.40001MR14,490e
- [6] C. CHEVALLEY, Sur les décompositions cellulaires des espaces G/B, in Algebraic Groups and their Generalizations : Classical Methods, American Mathematical Society, (1994), 1-23. Proceedings and Symposia in Pure Mathematics, vol. 56, Part 1. Zbl0824.14042MR95e:14041
- [7] M. DEMAZURE, Désingularisation des variétés de Schubert généralisées, Ann. Sc. E.N.S. (4), 7 (1974), 53-88. Zbl0312.14009MR50 #7174
- [8] V. DEODHAR, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511. Zbl0563.14023MR86f:20045
- [9] C. EHRESMANN, Sur la topologie de certains espaces homogènes, Ann. Math., 35 (1934), 396-443. Zbl0009.32903JFM60.1223.05
- [10] S. FOMIN and A. KIRILLOV, Yang-Baxter equation, symmetric functions and Schubert polynomials, Proc. FPSAC 5, Florence, 1993. Zbl0852.05078
- [11] S. FOMIN and R. STANLEY, Schubert polynomials and the nilCoxeter algebra, Adv. Math., 103 (1994), 196-207. Zbl0809.05091MR95f:05115
- [12] W. FULTON, Intersection Theory, Ergebnisse der Math. 2, Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
- [13] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, Joseph Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
- [14] H. HILLER, Combinatorics and intersections of Schubert varieties, Comment. Math. Helvetica, 57 (1982), 41-59. Zbl0501.14030MR84b:14028
- [15] W. V. D. HODGE and D. PEDOE, Methods of Algebraic Geometry, vol. II, Cambridge University Press, 1952. Zbl0048.14502
- [16] S. KLEIMAN, The transversality of a general translate, Comp. Math., 28 (1974), 287-297. Zbl0288.14014MR50 #13063
- [17] A. LASCOUX and M.-P. SCHUTZENBERGER, Polynômes de Schubert, C. R. Acad. Sci. Paris, 294 (1982), 447-450. Zbl0495.14031MR83e:14039
- [18] A. LASCOUX and M.-P. SCHUTZENBERGER, Symmetry and flag manifolds, in Invariant Theory, (Montecatini, 1982), Springer-Verlag, 1983, 118-144. Lecture Notes in Mathematics 996. Zbl0542.14031MR85e:14073
- [19] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. Zbl0487.20007MR84g:05003
- [20] I. G. MACDONALD, Notes on Schubert Polynomials, Laboratoire de combinatoire et d'informatique mathématique (LACIM), Université du Québec à Montréal, Montréal, 1991.
- [21] D. MONK, The geometry of flag manifolds, Proc. London Math. Soc., 9 (1959), 253-286. Zbl0096.36201MR21 #5641