The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Pieri's formula for flag manifolds and Schubert polynomials”

Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces

László Fehér, Richárd Rimányi (2003)

Open Mathematics

Similarity:

The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.

Double Schubert polynomials and degeneracy loci for the classical groups

Andrew Kresch, Harry Tamvakis (2002)

Annales de l’institut Fourier

Similarity:

We propose a theory of double Schubert polynomials P w ( X , Y ) for the Lie types B , C , D which naturally extends the family of Lascoux and Schützenberger in type A . These polynomials satisfy positivity, orthogonality and stability properties, and represent the classes of Schubert varieties and degeneracy loci of vector bundles. When w is a maximal Grassmannian element of the Weyl group, P w ( X , Y ) can be expressed in terms of Schur-type determinants and Pfaffians, in analogy with the type A formula of...

The cohomology ring of polygon spaces

Jean-Claude Hausmann, Allen Knutson (1998)

Annales de l'institut Fourier

Similarity:

We compute the integer cohomology rings of the “polygon spaces”introduced in [F. Kirwan, Cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906] and [M. Kapovich & J. Millson, the symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, 44 (1996), 479-513]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from...

A Pieri-type formula for even orthogonal Grassmannians

Piotr Pragacz, Jan Ratajski (2003)

Fundamenta Mathematicae

Similarity:

We study the cohomology ring of the Grassmannian G of isotropic n-subspaces of a complex 2m-dimensional vector space, endowed with a nondegenerate orthogonal form (here 1 ≤ n < m). We state and prove a formula giving the Schubert class decomposition of the cohomology products in H*(G) of general Schubert classes by "special Schubert classes", i.e. the Chern classes of the dual of the tautological vector bundle of rank n on G. We discuss some related properties of reduced decompositions...