Extension and lacunas of solutions of linear partial differential equations
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 2, page 429-464
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFranken, Uwe, and Meise, Reinhold. "Extension and lacunas of solutions of linear partial differential equations." Annales de l'institut Fourier 46.2 (1996): 429-464. <http://eudml.org/doc/75184>.
@article{Franken1996,
abstract = {Let $K\subset Q$ be compact, convex sets in $\{\Bbb R\}^n$ with $\{\mathrel \{\mathop \{\hspace\{0.0pt\}K\}\limits ^\{\circ \}\}\}\ne \emptyset$ and let $P(D)$ be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of $P(D)$ in the space $\{\cal E\}(K)$ of all $C^\infty $-functions on $K$ extends to a zero solution in $\{\cal E\}(Q)$ resp. in $\{\cal E\}(\{\Bbb R\}^n)$. The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of $P$ in $\{\Bbb C\}^n$ and in terms of fundamental solutions for $P(D)$ with lacunas.},
author = {Franken, Uwe, Meise, Reinhold},
journal = {Annales de l'institut Fourier},
keywords = {Whitney extension of zero-solutions; Phragmén-Lindelöf conditions for algebraic varieties; fundamental solutions with lacunas; continuous linear right inverses for constants coefficient partial differential operators},
language = {eng},
number = {2},
pages = {429-464},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extension and lacunas of solutions of linear partial differential equations},
url = {http://eudml.org/doc/75184},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Franken, Uwe
AU - Meise, Reinhold
TI - Extension and lacunas of solutions of linear partial differential equations
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 2
SP - 429
EP - 464
AB - Let $K\subset Q$ be compact, convex sets in ${\Bbb R}^n$ with ${\mathrel {\mathop {\hspace{0.0pt}K}\limits ^{\circ }}}\ne \emptyset$ and let $P(D)$ be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of $P(D)$ in the space ${\cal E}(K)$ of all $C^\infty $-functions on $K$ extends to a zero solution in ${\cal E}(Q)$ resp. in ${\cal E}({\Bbb R}^n)$. The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of $P$ in ${\Bbb C}^n$ and in terms of fundamental solutions for $P(D)$ with lacunas.
LA - eng
KW - Whitney extension of zero-solutions; Phragmén-Lindelöf conditions for algebraic varieties; fundamental solutions with lacunas; continuous linear right inverses for constants coefficient partial differential operators
UR - http://eudml.org/doc/75184
ER -
References
top- [1] C. BOITI and M. NACINOVICH, Evolution and hyperbolic pairs, preprint. Zbl1008.32020
- [2] J.-M. BONY and M. SCHAPIRA, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Inventiones Math., 17 (1972), 95-105. Zbl0225.35008MR49 #3305
- [3] M.L. DE CHRISTOFORIS, Soluzioni con lacune di certi operatori differenziali lineari, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica 102, vol. VIII (1984), 137-142.
- [4] U. FRANKEN, On the equivalence of holomorphic and plurisubharmonic Phragmén-Lindelöf principles, Michigan Math. J., 42 (1995), 163-173. Zbl0839.32007MR96d:32014
- [5] U. FRANKEN and R. MEISE, Continuous linear right inverses for homogeneous linear partial differential operators on bounded convex open sets and extension of zero-solutions, Proceedings of the Trier work shop on “Functional Analysis”, S. Dierolf, S. Dineen, and P. Domanski (Eds.) de Gruyter (1996), to appear. Zbl1146.35330MR97k:35026
- [6] S. HANSEN, On the fundamental principle of L. Ehrenpreis, Banach Center Publ., 10 (1983), 185-201. Zbl0555.35009MR85h:35054
- [7] L. HÖRMANDER, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21 (1973), 151-183. Zbl0282.35015MR49 #817
- [8] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators I and II, Springer 1983. Zbl0521.35001
- [9] A. KANEKO, Hartogs type extension theorem of real analytic solutions of linear partial differential equations with constant coefficients, Advances in the theory of Fréchet Spaces (T. Terzioglu, e.d.) NATO Adv. Sci. Inst., Ser. C : Math. Phys. Sci., 289 (1989), 63-72. Zbl0713.35017MR1083558
- [10] C.O. KISELMAN, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France, 97 (1969), 329-356. Zbl0189.40502MR42 #2161
- [11] M. LANGENBRUCH, Extension of ultradifferentiable functions, Manuscripta Math., 83 (1994), 123-143. Zbl0836.46027MR95d:46038
- [12] O. LIESS, Extension of zero solutions of linear partial differential operators, Darmstadt 1983, preprint. Zbl0524.35021
- [13] R. MEISE and B.A. TAYLOR, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat., 26 (1988), 265-287. Zbl0683.46020MR91h:46074
- [14] R. MEISE and B.A. TAYLOR, Linear extension operators for ultradifferentiable functions of Beurling type on compact sets, Amer. J. Math., 111 (1989), 309-337. Zbl0696.46001MR90c:46034
- [15] R. MEISE, B.A. TAYLOR and D. VOGT, Characterization of linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, Grenoble, 40-3 (1990), 619-655. Zbl0703.46025MR92e:46083
- [16] R. MEISE, B.A. TAYLOR and D. VOGT, Equivalence of analytic and plurisubharmonic Phragmén-Lindelöf principles on algebraic varieties, Proceedings of Symposia in Pure Mathematics, 52 (1991), 287-308. Zbl0745.32004MR93a:32023
- [17] R. MEISE, B.A. TAYLOR and D. VOGT, Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions, in “Functional Analysis”, K. D. Bierstedt, A. Pietsch, W. M. Ruess, and D. Vogt (Eds.) Lecture Notes in Pure and Applied Math., Vol. 150 Marcel Dekker, (1994), pp. 357-389. Zbl0806.46041MR94k:35064
- [18] R. MEISE, B.A. TAYLOR and D. VOGT, Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc., to appear. Zbl0896.32008
- [19] R. MEISE, B.A. TAYLOR and D. VOGT, Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces, preprint. Zbl0876.35023
- [20] R. MEISE, D. VOGT, Einführung in die Funktionalanalysis, Vieweg, 1992. Zbl0781.46001
- [21] V. P. PALAMODOV, Linear Differential Operators with constant Coefficients, Springer, 1970. Zbl0191.43401MR41 #8793
- [22] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
- [23] R. SCHNEIDER, Convex Bodies : the Minkowski Theory, Cambridge University Press, 1993. Zbl0798.52001MR94d:52007
- [24] M. TIDTEN, Fortsetzung von C∞-Funktionen, welche auf einer abgeschlossenen Menge in ℝn definiert sind, Manuscripta Math., 27 (1979), 291-312. Zbl0412.46027
- [25] H. WHITNEY, Analytic extension of differentiable Functions, defined on closed sets, Trans. Am. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735JFM60.0217.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.