Extension and lacunas of solutions of linear partial differential equations

Uwe Franken; Reinhold Meise

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 2, page 429-464
  • ISSN: 0373-0956

Abstract

top
Let K Q be compact, convex sets in n with K and let P ( D ) be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of P ( D ) in the space ( K ) of all C -functions on K extends to a zero solution in ( Q ) resp. in ( n ) . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of P in n and in terms of fundamental solutions for P ( D ) with lacunas.

How to cite

top

Franken, Uwe, and Meise, Reinhold. "Extension and lacunas of solutions of linear partial differential equations." Annales de l'institut Fourier 46.2 (1996): 429-464. <http://eudml.org/doc/75184>.

@article{Franken1996,
abstract = {Let $K\subset Q$ be compact, convex sets in $\{\Bbb R\}^n$ with $\{\mathrel \{\mathop \{\hspace\{0.0pt\}K\}\limits ^\{\circ \}\}\}\ne \emptyset$ and let $P(D)$ be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of $P(D)$ in the space $\{\cal E\}(K)$ of all $C^\infty $-functions on $K$ extends to a zero solution in $\{\cal E\}(Q)$ resp. in $\{\cal E\}(\{\Bbb R\}^n)$. The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of $P$ in $\{\Bbb C\}^n$ and in terms of fundamental solutions for $P(D)$ with lacunas.},
author = {Franken, Uwe, Meise, Reinhold},
journal = {Annales de l'institut Fourier},
keywords = {Whitney extension of zero-solutions; Phragmén-Lindelöf conditions for algebraic varieties; fundamental solutions with lacunas; continuous linear right inverses for constants coefficient partial differential operators},
language = {eng},
number = {2},
pages = {429-464},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extension and lacunas of solutions of linear partial differential equations},
url = {http://eudml.org/doc/75184},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Franken, Uwe
AU - Meise, Reinhold
TI - Extension and lacunas of solutions of linear partial differential equations
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 2
SP - 429
EP - 464
AB - Let $K\subset Q$ be compact, convex sets in ${\Bbb R}^n$ with ${\mathrel {\mathop {\hspace{0.0pt}K}\limits ^{\circ }}}\ne \emptyset$ and let $P(D)$ be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of $P(D)$ in the space ${\cal E}(K)$ of all $C^\infty $-functions on $K$ extends to a zero solution in ${\cal E}(Q)$ resp. in ${\cal E}({\Bbb R}^n)$. The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of $P$ in ${\Bbb C}^n$ and in terms of fundamental solutions for $P(D)$ with lacunas.
LA - eng
KW - Whitney extension of zero-solutions; Phragmén-Lindelöf conditions for algebraic varieties; fundamental solutions with lacunas; continuous linear right inverses for constants coefficient partial differential operators
UR - http://eudml.org/doc/75184
ER -

References

top
  1. [1] C. BOITI and M. NACINOVICH, Evolution and hyperbolic pairs, preprint. Zbl1008.32020
  2. [2] J.-M. BONY and M. SCHAPIRA, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Inventiones Math., 17 (1972), 95-105. Zbl0225.35008MR49 #3305
  3. [3] M.L. DE CHRISTOFORIS, Soluzioni con lacune di certi operatori differenziali lineari, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica 102, vol. VIII (1984), 137-142. 
  4. [4] U. FRANKEN, On the equivalence of holomorphic and plurisubharmonic Phragmén-Lindelöf principles, Michigan Math. J., 42 (1995), 163-173. Zbl0839.32007MR96d:32014
  5. [5] U. FRANKEN and R. MEISE, Continuous linear right inverses for homogeneous linear partial differential operators on bounded convex open sets and extension of zero-solutions, Proceedings of the Trier work shop on “Functional Analysis”, S. Dierolf, S. Dineen, and P. Domanski (Eds.) de Gruyter (1996), to appear. Zbl1146.35330MR97k:35026
  6. [6] S. HANSEN, On the fundamental principle of L. Ehrenpreis, Banach Center Publ., 10 (1983), 185-201. Zbl0555.35009MR85h:35054
  7. [7] L. HÖRMANDER, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21 (1973), 151-183. Zbl0282.35015MR49 #817
  8. [8] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators I and II, Springer 1983. Zbl0521.35001
  9. [9] A. KANEKO, Hartogs type extension theorem of real analytic solutions of linear partial differential equations with constant coefficients, Advances in the theory of Fréchet Spaces (T. Terzioglu, e.d.) NATO Adv. Sci. Inst., Ser. C : Math. Phys. Sci., 289 (1989), 63-72. Zbl0713.35017MR1083558
  10. [10] C.O. KISELMAN, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France, 97 (1969), 329-356. Zbl0189.40502MR42 #2161
  11. [11] M. LANGENBRUCH, Extension of ultradifferentiable functions, Manuscripta Math., 83 (1994), 123-143. Zbl0836.46027MR95d:46038
  12. [12] O. LIESS, Extension of zero solutions of linear partial differential operators, Darmstadt 1983, preprint. Zbl0524.35021
  13. [13] R. MEISE and B.A. TAYLOR, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat., 26 (1988), 265-287. Zbl0683.46020MR91h:46074
  14. [14] R. MEISE and B.A. TAYLOR, Linear extension operators for ultradifferentiable functions of Beurling type on compact sets, Amer. J. Math., 111 (1989), 309-337. Zbl0696.46001MR90c:46034
  15. [15] R. MEISE, B.A. TAYLOR and D. VOGT, Characterization of linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, Grenoble, 40-3 (1990), 619-655. Zbl0703.46025MR92e:46083
  16. [16] R. MEISE, B.A. TAYLOR and D. VOGT, Equivalence of analytic and plurisubharmonic Phragmén-Lindelöf principles on algebraic varieties, Proceedings of Symposia in Pure Mathematics, 52 (1991), 287-308. Zbl0745.32004MR93a:32023
  17. [17] R. MEISE, B.A. TAYLOR and D. VOGT, Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions, in “Functional Analysis”, K. D. Bierstedt, A. Pietsch, W. M. Ruess, and D. Vogt (Eds.) Lecture Notes in Pure and Applied Math., Vol. 150 Marcel Dekker, (1994), pp. 357-389. Zbl0806.46041MR94k:35064
  18. [18] R. MEISE, B.A. TAYLOR and D. VOGT, Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc., to appear. Zbl0896.32008
  19. [19] R. MEISE, B.A. TAYLOR and D. VOGT, Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces, preprint. Zbl0876.35023
  20. [20] R. MEISE, D. VOGT, Einführung in die Funktionalanalysis, Vieweg, 1992. Zbl0781.46001
  21. [21] V. P. PALAMODOV, Linear Differential Operators with constant Coefficients, Springer, 1970. Zbl0191.43401MR41 #8793
  22. [22] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
  23. [23] R. SCHNEIDER, Convex Bodies : the Minkowski Theory, Cambridge University Press, 1993. Zbl0798.52001MR94d:52007
  24. [24] M. TIDTEN, Fortsetzung von C∞-Funktionen, welche auf einer abgeschlossenen Menge in ℝn definiert sind, Manuscripta Math., 27 (1979), 291-312. Zbl0412.46027
  25. [25] H. WHITNEY, Analytic extension of differentiable Functions, defined on closed sets, Trans. Am. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735JFM60.0217.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.