Displaying similar documents to “Extension and lacunas of solutions of linear partial differential equations”

Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse

B. A. Taylor, R. Meise, Dietmar Vogt (1990)

Annales de l'institut Fourier

Similarity:

Solving a problem of L. Schwartz, those constant coefficient partial differential operators P ( D ) are characterized that admit a continuous linear right inverse on ( Ω ) or 𝒟 ' ( Ω ) , Ω an open set in R n . For bounded Ω with C 1 -boundary these properties are equivalent to P ( D ) being very hyperbolic. For Ω = R n they are equivalent to a Phragmen-Lindelöf condition holding on the zero variety of the polynomial P .

Plurisubharmonic functions with logarithmic singularities

E. Bedford, B. A. Taylor (1988)

Annales de l'institut Fourier

Similarity:

To a plurisubharmonic function u on C n with logarithmic growth at infinity, we may associate the Robin function ρ u ( z ) = lim sup λ u ( λ z ) - log ( λ z ) defined on P n - 1 , the hyperplane at infinity. We study the classes L + , and (respectively) L p of plurisubharmonic functions which have the form u = log ( 1 + | z | ) + O ( 1 ) and (respectively) for which the function ρ u is not identically - . We obtain an integral formula which connects the Monge-Ampère measure on the space C n with the Robin function on P n - 1 . As an application we obtain a criterion...

Distribution of nodes on algebraic curves in N

Thomas Bloom, Norman Levenberg (2003)

Annales de l’institut Fourier

Similarity:

Given an irreducible algebraic curves A in N , let m d be the dimension of the complex vector space of all holomorphic polynomials of degree at most d restricted to A . Let K be a nonpolar compact subset of A , and for each d = 1 , 2 , . . . , choose m d points { A d j } j = 1 , . . . , m d in K . Finally, let Λ d be the d -th Lebesgue constant of the array { A d j } ; i.e., Λ d is the operator norm of the Lagrange interpolation operator L d acting on C ( K ) , where L d ( f ) is the Lagrange interpolating polynomial for f of degree d at the points { A d j } j = 1 , . . . , m d . Using techniques...

On the closure of spaces of sums of ridge functions and the range of the X -ray transform

Jan Boman (1984)

Annales de l'institut Fourier

Similarity:

For a R n { 0 } and Ω an open bounded subset of R n definie L p ( Ω , a ) as the closed subset of L p ( Ω ) consisting of all functions that are constant almost everywhere on almost all lines parallel to a . For a given set of directions a ν R n { 0 } , ν = 1 , ... , m , we study for which Ω it is true that the vector space ( * ) L p ( Ω , a 1 ) + + L p ( Ω , a m ) is a closed subspace of L p ( Ω ) . This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator...

Linear forms in the logarithms of three positive rational numbers

Curtis D. Bennett, Josef Blass, A. M. W. Glass, David B. Meronk, Ray P. Steiner (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

In this paper we prove a lower bound for the linear dependence of three positive rational numbers under certain weak linear independence conditions on the coefficients of the linear forms. Let Λ = b 2 log α 2 - b 1 log α 1 - b 3 log α 3 0 with b 1 , b 2 , b 3 positive integers and α 1 , α 2 , α 3 positive multiplicatively independent rational numbers greater than 1 . Let α j 1 = α j 1 / α j 2 with α j 1 , α j 2 coprime positive integers ( j = 1 , 2 , 3 ) . Let α j max { α j 1 , e } and assume that gcd ( b 1 , b 2 , b 3 ) = 1 . Let b ' = b 2 log α 1 + b 1 log α 2 b 2 log α 3 + b 3 log α 2 and assume that B max { 10 , log b ' } . We prove that either { b 1 , b 2 , b 3 } is c 4 , B -linearly dependent over (with respect to a 1 , a 2 , a 3 )...

Linear independence of linear forms in polylogarithms

Raffaele Marcovecchio (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

For x , | x | < 1 , s , let Li s ( x ) be the s -th polylogarithm of x . We prove that for any non-zero algebraic number α such that | α | < 1 , the ( α ) -vector space spanned by 1 , Li 1 ( α ) , Li 2 ( α ) , has infinite dimension. This result extends a previous one by Rivoal for rational α . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.