Singularities of hyperdeterminants

Jerzy Weyman; Andrei Zelevinsky

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 3, page 591-644
  • ISSN: 0373-0956

Abstract

top
We study the singular locus of the variety of degenerate hypermatrices of an arbitrary format. Our main result is a classification of irreducible components of the singular locus. Equivalently, we classify irreducible components of the singular locus for the projectively dual variety of a product of several projective spaces taken in the Segre embedding.

How to cite

top

Weyman, Jerzy, and Zelevinsky, Andrei. "Singularities of hyperdeterminants." Annales de l'institut Fourier 46.3 (1996): 591-644. <http://eudml.org/doc/75190>.

@article{Weyman1996,
abstract = {We study the singular locus of the variety of degenerate hypermatrices of an arbitrary format. Our main result is a classification of irreducible components of the singular locus. Equivalently, we classify irreducible components of the singular locus for the projectively dual variety of a product of several projective spaces taken in the Segre embedding.},
author = {Weyman, Jerzy, Zelevinsky, Andrei},
journal = {Annales de l'institut Fourier},
keywords = {hyperdeterminant; singular locus; cusp type singularities; node type singularities; projectively dual variety; Segre embedding},
language = {eng},
number = {3},
pages = {591-644},
publisher = {Association des Annales de l'Institut Fourier},
title = {Singularities of hyperdeterminants},
url = {http://eudml.org/doc/75190},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Weyman, Jerzy
AU - Zelevinsky, Andrei
TI - Singularities of hyperdeterminants
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 3
SP - 591
EP - 644
AB - We study the singular locus of the variety of degenerate hypermatrices of an arbitrary format. Our main result is a classification of irreducible components of the singular locus. Equivalently, we classify irreducible components of the singular locus for the projectively dual variety of a product of several projective spaces taken in the Segre embedding.
LA - eng
KW - hyperdeterminant; singular locus; cusp type singularities; node type singularities; projectively dual variety; Segre embedding
UR - http://eudml.org/doc/75190
ER -

References

top
  1. [1] A. CAYLEY, On the theory of elimination, Cambridge and Dublin Math. Journal, 3 (1848), 116-120; reprinted in : Collected Papers, Vol. 1, N° 59, 370-374, Cambridge University Press, 1889. 
  2. [2] A. DIMCA, Milnor numbers and multiplicities of dual varieties, Rev. Roumaine Math. Pures Appl., 31 (1986), 535-538. Zbl0606.14002MR87k:14002
  3. [3] W. FULTON, J. HARRIS, Representation Theory, Graduate Texts in Mathematics, N° 129, Springer-Verlag, 1991. Zbl0744.22001MR93a:20069
  4. [4] I.M. GELFAND, M.M. KAPRANOV, A.V. ZELEVINSKY, Hyperdeterminants, Adv. in Math., 96 (1992), 226-263. Zbl0774.15002MR94g:14023
  5. [5] I.M. GELFAND, M.M. KAPRANOV, A.V. ZELEVINSKY, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994. Zbl0827.14036
  6. [6] M.M. KAPRANOV, B. STURMFELS, A.V. ZELEVINSKY, Chow polytopes and general resultants, Duke Math. J., 67, N° 1 (1992), 189-218. Zbl0780.14027MR93e:14062
  7. [7] N. KATZ, Pinceaux de Lefschetz; Théorème d'existence, in : SGA 7, Lecture Notes in Math., vol. 340, 212-253. Zbl0284.14006
  8. [8] S. KLEIMAN, Enumerative theory of singularities, in : Real and complex singularities (Proc. Ninth Nordic Summer School / NAVF Sympos. Math., Oslo, 1976), 297-396. Zbl0385.14018MR58 #27960
  9. [9] I. MACDONALD, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979. Zbl0487.20007MR84g:05003
  10. [10] A. PARUSIŃSKI, Multiplicity of the dual variety, Bull. London Math. Soc., 23 (1991), 429-436. Zbl0714.14027MR93a:14006
  11. [11] L. SCHLÄFLI, Über die Resultante eines Systems mehrerer algebraischer Gleichungen, Denkschr. der Kaiserl. Akad. Wiss., Math-Naturwiss. Klasse, 4 (1852), reprinted in : Gessamelte Abhandlungen, vol.2, N° 9, p. 9-112, Birkhäuser-Verlag, Basel, 1953. 
  12. [12] J. WEYMAN, Calculating discriminants by higher direct images, Trans. AMS, 343, N° 1 (1994), 367-389. Zbl0823.14040MR94g:14026
  13. [13] J. WEYMAN, A.V. ZELEVINSKY, Multiplicative properties of projectively dual varieties, Manuscripta Math., 82 (1994), 139-148. Zbl0839.14039MR94m:14070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.