Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program

Khalid Koufany; Bent Ørsted

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 3, page 689-722
  • ISSN: 0373-0956

Abstract

top
For the scalar holomorphic discrete series representations of SU ( 2 , 2 ) and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside SU ( 2 , 2 ) . We construct a Cayley transform between the Ol’shanskiĭ semigroup having U ( 1 , 1 ) as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for SU ( 2 , 2 ) . This allows calculating the composition series in terms of harmonic analysis on U ( 1 , 1 ) . In particular we show that the Ol’shanskiĭ Hardy space for U ( 1 , 1 ) is different from the classical Hardy space for U ( 2 ) ; this provides a counterexample to a statement in a paper by Gindikin.

How to cite

top

Koufany, Khalid, and Ørsted, Bent. "Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program." Annales de l'institut Fourier 46.3 (1996): 689-722. <http://eudml.org/doc/75192>.

@article{Koufany1996,
abstract = {For the scalar holomorphic discrete series representations of $\{\rm SU\}(2,2)$ and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside $\{\rm SU\}(2,2)$. We construct a Cayley transform between the Ol’shanskiĭ semigroup having $\{\rm U\}(1,1)$ as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for $\{\rm SU\}(2,2)$. This allows calculating the composition series in terms of harmonic analysis on $\{\rm U\}(1,1)$. In particular we show that the Ol’shanskiĭ Hardy space for $\{\rm U\}(1,1)$ is different from the classical Hardy space for $\{\rm U\}(2)$; this provides a counterexample to a statement in a paper by Gindikin.},
author = {Koufany, Khalid, Ørsted, Bent},
journal = {Annales de l'institut Fourier},
keywords = {Cauchy-Szegö kernel; Cayley transform; composition series; Hardy space; holomorphic discrete series; Ol’shanskiĭ semigroup},
language = {eng},
number = {3},
pages = {689-722},
publisher = {Association des Annales de l'Institut Fourier},
title = {Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program},
url = {http://eudml.org/doc/75192},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Koufany, Khalid
AU - Ørsted, Bent
TI - Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 3
SP - 689
EP - 722
AB - For the scalar holomorphic discrete series representations of ${\rm SU}(2,2)$ and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside ${\rm SU}(2,2)$. We construct a Cayley transform between the Ol’shanskiĭ semigroup having ${\rm U}(1,1)$ as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for ${\rm SU}(2,2)$. This allows calculating the composition series in terms of harmonic analysis on ${\rm U}(1,1)$. In particular we show that the Ol’shanskiĭ Hardy space for ${\rm U}(1,1)$ is different from the classical Hardy space for ${\rm U}(2)$; this provides a counterexample to a statement in a paper by Gindikin.
LA - eng
KW - Cauchy-Szegö kernel; Cayley transform; composition series; Hardy space; holomorphic discrete series; Ol’shanskiĭ semigroup
UR - http://eudml.org/doc/75192
ER -

References

top
  1. [1]J. FARAUT, Hardy spaces in non-commutative harmonic analysis, Summer School, Tuczno, 1994. 
  2. [2]J. FARAUT and A. KORÁNYI, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Clarendon Press, 1994. Zbl0841.43002MR98g:17031
  3. [3]I.M. GEL'FAND and S.G. GINDIKIN, Complex manifolds whose skeletons are semi-simple real Lie groups, and analytic discrete series of representations, Funct. Anal. Appl., 11 (1977), 258-265. Zbl0449.22018
  4. [4]S.G. GINDIKIN, Generalized conformal structures on classical real Lie groups and related problems on the theory of representations, C. R. Acad. Sci. Paris, 315 (1992), 675-679. Zbl0788.22008MR93h:32045
  5. [5]S.G. GINDIKIN, Fourier transform and Hardy spaces of ∂-cohomology in tube domains, C. R. Acad. Sci. Paris, 315 (1992), 1139-1143. Zbl0771.32001MR93m:32006
  6. [6]H. HECHT, The characters of some representations of Harish-Chandra, Math. Ann., 210 (1976), 213-226. Zbl0301.22009MR55 #573
  7. [7]J. HILGERT, A note on Howe's oscillator semigroup, Annal. Inst. Fourier, 39-3 (1989), 663-688. Zbl0674.47029MR91b:22008
  8. [8]J. HILGERT and K.-H. NEEB, Lie Semigroups and theirs Applications, Lecture Notes in Math. Springer-Verlag, 1993, t. 1552. Zbl0807.22001MR96j:22002
  9. [9]J. HILGERT and H. ÓLAFSSON, Analytic continuations of representations, the solvable case, Jap. Journal of Math., 18 (1992), 213-290. Zbl0788.22014
  10. [10]R. HOWE, The Oscillator Semigroup, Proc. Symp. Pure Math., 48 (1988), 61-132. Zbl0687.47034MR90f:22014
  11. [11]H.P. JAKOBSEN and M. VERGNE, Wave and Dirac operators, and representations of the conformal group, J. Funct. Anal., 24 (1977), 52-106. Zbl0361.22012MR55 #12876
  12. [12]H.P. JACOBSEN and M. VERGNE, Restrictions and expansions of holomorphic representations, J. Funct. Anal., 34 (1979), 29-53. Zbl0433.22011MR80m:22020
  13. [13]M. KASHIWARA and M. VERGNE, K-types and singular spectrum, Lecture Note in Math., Springer-Verlag t. 728, 1978. 
  14. [14]K. KOUFANY et B. ØRSTED, Espace de Hardy sur le semi-groupe métaplectique, C. R. Acad. Sci. Paris, 322, Série I (1996), 113-116. Zbl0880.22003MR96m:22017
  15. [15]K. KOUFANY and B. ØRSTED, Hardy spaces on two-sheeted covering semigroups, in preparation, 1996. Zbl0884.22006
  16. [16]O. LOOS, Bounded symmetric domains and Jordan pairs, Lecture notes, University of California, Irvine, 1977. Zbl0228.32012
  17. [17]G.I. OL'SHANSKIĬ, Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series, Funct. Anal. Appl., 15 (1982), 275-285. Zbl0503.22011
  18. [18]G.I. OL'SHANSKIĬ, Complex Lie semigroups, Hardy spaces and the Gel'fand Gindikin program, Topics in group theory and homological algebra, Yaroslavl University Press, 1982, p. 85-98 (Russian); English translation in Differential Geomerty and its Applications, 1 (1991), 235-246. Zbl0789.22011
  19. [19]B. ØRSTED, Composition series for analytic continuations of holomorphic discrete series representations of SU(n,n), Trans. Amer. Math. Soc., 260 (1980), 563-573. Zbl0439.22017MR81g:22020
  20. [20]B. ØRSTED, The conformal invariance of Huygen's principle, J. Diff. Geom., 16 (1981), 1-9. Zbl0447.35059MR83c:58080
  21. [21] S. PANEITZ and I. SEGAL, Quantization of wave equations and hermitian structures in partial differential varieties, Proc. Nat. Acad. Sci. USA, 77 (1980), 6943-6947. Zbl0469.35065MR82g:81040
  22. [22]H. ROSSI and M. VERGNE, Analytic continuation of the holomorphic discrete series, Acta Math., 136 (1976), 1-59. Zbl0356.32020MR58 #1032
  23. [23]B. SPEH, Degenerate series representations of the universal covering group of SU(2,2), J. Funct. Anal., 33 (1978), 95-118. Zbl0415.22012MR80j:22017
  24. [24]R.J. STANTON, Analytic extension of the holomorphic discrete series, Amer. J. of Math., 108 (1986), 1411-1424. Zbl0626.43008MR88b:22013
  25. [25]H. WEYL, The classical groups, Princeton Univ. Press, Princeton, N.J., 1946. Zbl1024.20502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.