# Relative discrete series of line bundles over bounded symmetric domains

Anthony H. Dooley; Bent Ørsted; Genkai Zhang

Annales de l'institut Fourier (1996)

- Volume: 46, Issue: 4, page 1011-1026
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topDooley, Anthony H., Ørsted, Bent, and Zhang, Genkai. "Relative discrete series of line bundles over bounded symmetric domains." Annales de l'institut Fourier 46.4 (1996): 1011-1026. <http://eudml.org/doc/75197>.

@article{Dooley1996,

abstract = {We study the relative discrete series of the $L^2$-space of the sections of a line bundle over a bounded symmetric domain. We prove that all the discrete series appear as irreducible submodules of the tensor product of a holomorphic discrete series with a finite dimensional representation.},

author = {Dooley, Anthony H., Ørsted, Bent, Zhang, Genkai},

journal = {Annales de l'institut Fourier},

keywords = {bounded symmetric domain; line bundle; relative discrete series; holomorphic discrete series},

language = {eng},

number = {4},

pages = {1011-1026},

publisher = {Association des Annales de l'Institut Fourier},

title = {Relative discrete series of line bundles over bounded symmetric domains},

url = {http://eudml.org/doc/75197},

volume = {46},

year = {1996},

}

TY - JOUR

AU - Dooley, Anthony H.

AU - Ørsted, Bent

AU - Zhang, Genkai

TI - Relative discrete series of line bundles over bounded symmetric domains

JO - Annales de l'institut Fourier

PY - 1996

PB - Association des Annales de l'Institut Fourier

VL - 46

IS - 4

SP - 1011

EP - 1026

AB - We study the relative discrete series of the $L^2$-space of the sections of a line bundle over a bounded symmetric domain. We prove that all the discrete series appear as irreducible submodules of the tensor product of a holomorphic discrete series with a finite dimensional representation.

LA - eng

KW - bounded symmetric domain; line bundle; relative discrete series; holomorphic discrete series

UR - http://eudml.org/doc/75197

ER -

## References

top- [CM] W. CASSELMAN & D. MILIĆIC, Asymptotic behaviour of matrix coefficients of admissible representations, Duke Math. J., 49 (1982), 869-930. Zbl0524.22014MR85a:22024
- [FK] J. FARAUT & A. KORANYI, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 89 (1990), 64-89. Zbl0718.32026MR90m:32049
- [HC] HARISH-CHANDRA, Representations of semisimple Lie groups IV, Amer. J. Math., 77 (1955), 743-777. Zbl0066.35603MR17,282c
- [He] S. HELGASON, Groups and geometric analysis, Academic Press, London, 1984. Zbl0543.58001
- [JP] S. JANSON & J. PEETRE, A new generalization of Hankel operators, Math. Nachr., 132 (1987), 313-328. Zbl0644.47026MR88m:47045
- [J] K. D. JOHNSON, On a ring of invariant polynomials on a Hermitian symmetric space, J. of Algebra, 67 (1980), 72-81. Zbl0491.22007MR83c:22019
- [LP] H. LIU & L. PENG, Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations, Math. Scand., 72 (1993), 99-119. Zbl0785.22018
- [L] O. LOOS, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977. Zbl0228.32012
- [OZ1] B. ØRSTED & G. ZHANG, Tensor products of analytic continuations of holomorphic discrete series, preprint, 1994.
- [OZ2] B. ØRSTED & G. ZHANG, in preparation.
- [P] J. PEETRE, Covariant Laplaceans and Cauchy-Riemann operators for a Cartan domain, manuscript.
- [PPZ] J. PEETRE, L. PENG & G. ZHANG, A weighted Plancherel formula I. The case of the unit disk. Application to Hankel operators, technical report, Stockholm, 1990.
- [PZ] J. PEETRE & G. ZHANG, A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math., 43 (1992), 273-301. Zbl0836.43018
- [Re] J. REPKA, Tensor products of holomorphic discrete series, Can. J. Math., 31 (1979), 836-844. Zbl0373.22006MR82c:22017
- [Sa] I. SATAKE, Algebraic structures of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Tokyo and Princeton, NJ, 1980. Zbl0483.32017MR82i:32003
- [Sch] H. SCHLICHTKRULL, One-dimensional K-types in finite dimensional representations of semisimple Lie groups : A generalization of Helgason's theorem, Math. Scand., 54 (1984), 279-294. Zbl0545.22015MR85i:22014
- [Sh] N. SHIMENO, The Plancherel formula for spherical functions with one-dimensional K-type on a simply connected simple Lie group of Hermitian type, J. Funct. Anal., 121 (1994), 331-388. Zbl0830.43018MR95b:22036
- [Up] H. UPMEIER, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25. Zbl0603.46055MR87e:32047
- [W] N. WALLACH, The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc., 251 (1979), 1-17; 19-37. Zbl0419.22017MR81a:22009
- [Ze] D. P. ZELOBENKO, Compact Lie groups and their representations, Amer. Math. Soc., Transl. Math. Monographs, vol. 40, Providence, Rhode Island, 1973. Zbl0272.22006
- [Zh1] G. ZHANG, Ha-plitz operators between Moebius invariant subspaces, Math. Scand., 71 (1992), 69-84. Zbl0793.47028MR94e:47039a
- [Zh2] G. ZHANG, A weighted Plancherel formula II. The case of the ball, Studia Math., 102 (1992), 103-120. Zbl0811.43003MR94e:43009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.