A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.
Collectanea Mathematica (1992)
- Volume: 43, Issue: 3, page 273-301
- ISSN: 0010-0757
Access Full Article
topHow to cite
topPeetre, Jaak, and Zhang, Gen Kai. "A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.." Collectanea Mathematica 43.3 (1992): 273-301. <http://eudml.org/doc/39596>.
@article{Peetre1992,
author = {Peetre, Jaak, Zhang, Gen Kai},
journal = {Collectanea Mathematica},
keywords = {Espectro del laplaciano; Kernel; Polinomios ortogonales; Función hipergeométrica; K-invariant eigenfunctions; SU(2,2); hyperbolic matrix ball; weighted measure; Laplace operator; spherical functions; hypergeometric functions; weighted Bergman space; orbits; Weyl group; Harish-Chandra - function; reproducing kernels; tensor products; holomorphic discrete series representations},
language = {eng},
number = {3},
pages = {273-301},
title = {A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.},
url = {http://eudml.org/doc/39596},
volume = {43},
year = {1992},
}
TY - JOUR
AU - Peetre, Jaak
AU - Zhang, Gen Kai
TI - A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.
JO - Collectanea Mathematica
PY - 1992
VL - 43
IS - 3
SP - 273
EP - 301
LA - eng
KW - Espectro del laplaciano; Kernel; Polinomios ortogonales; Función hipergeométrica; K-invariant eigenfunctions; SU(2,2); hyperbolic matrix ball; weighted measure; Laplace operator; spherical functions; hypergeometric functions; weighted Bergman space; orbits; Weyl group; Harish-Chandra - function; reproducing kernels; tensor products; holomorphic discrete series representations
UR - http://eudml.org/doc/39596
ER -
Citations in EuDML Documents
top- Benjamin Cahen, Stratonovich-Weyl correspondence for discrete series representations
- Miroslav Engliš, Jaak Peetre, Covariant differential operators and Green's functions
- Anthony H. Dooley, Bent Ørsted, Genkai Zhang, Relative discrete series of line bundles over bounded symmetric domains
- Benjamin Cahen, Stratonovich-Weyl correspondence for the Jacobi group
- Benjamin Cahen, Berezin quantization and holomorphic representations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.