# A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.

Collectanea Mathematica (1992)

- Volume: 43, Issue: 3, page 273-301
- ISSN: 0010-0757

## Access Full Article

top## How to cite

topPeetre, Jaak, and Zhang, Gen Kai. "A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.." Collectanea Mathematica 43.3 (1992): 273-301. <http://eudml.org/doc/39596>.

@article{Peetre1992,

author = {Peetre, Jaak, Zhang, Gen Kai},

journal = {Collectanea Mathematica},

keywords = {Espectro del laplaciano; Kernel; Polinomios ortogonales; Función hipergeométrica; K-invariant eigenfunctions; SU(2,2); hyperbolic matrix ball; weighted measure; Laplace operator; spherical functions; hypergeometric functions; weighted Bergman space; orbits; Weyl group; Harish-Chandra - function; reproducing kernels; tensor products; holomorphic discrete series representations},

language = {eng},

number = {3},

pages = {273-301},

title = {A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.},

url = {http://eudml.org/doc/39596},

volume = {43},

year = {1992},

}

TY - JOUR

AU - Peetre, Jaak

AU - Zhang, Gen Kai

TI - A weighted Plancherel formula. III. The case of the hyperbolic matrix ball.

JO - Collectanea Mathematica

PY - 1992

VL - 43

IS - 3

SP - 273

EP - 301

LA - eng

KW - Espectro del laplaciano; Kernel; Polinomios ortogonales; Función hipergeométrica; K-invariant eigenfunctions; SU(2,2); hyperbolic matrix ball; weighted measure; Laplace operator; spherical functions; hypergeometric functions; weighted Bergman space; orbits; Weyl group; Harish-Chandra - function; reproducing kernels; tensor products; holomorphic discrete series representations

UR - http://eudml.org/doc/39596

ER -

## Citations in EuDML Documents

top- Benjamin Cahen, Stratonovich-Weyl correspondence for discrete series representations
- Miroslav Engliš, Jaak Peetre, Covariant differential operators and Green's functions
- Anthony H. Dooley, Bent Ørsted, Genkai Zhang, Relative discrete series of line bundles over bounded symmetric domains
- Benjamin Cahen, Stratonovich-Weyl correspondence for the Jacobi group
- Benjamin Cahen, Berezin quantization and holomorphic representations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.