Idempotents in quotients and restrictions of Banach algebras of functions
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 4, page 1095-1124
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPedersen, Thomas Vils. "Idempotents in quotients and restrictions of Banach algebras of functions." Annales de l'institut Fourier 46.4 (1996): 1095-1124. <http://eudml.org/doc/75201>.
@article{Pedersen1996,
abstract = {Let $\{\cal A\}_\beta $ be the Beurling algebra with weight $(1+\vert n\vert )^\beta $ on the unit circle $\{\Bbb T\}$ and, for a closed set $E\subseteq \{\Bbb T\}$, let $J_\{\{\cal A\}_\beta \}(E)=\lbrace f\in \{\cal A\}_\beta :f=0\,\text\{on\} \text\{a\} \text\{neighbourhood\} \text\{of\}\, E\rbrace $. We prove that, for $\beta >\{1\over 2\}$, there exists a closed set $E\subseteq \{\Bbb T\}$ of measure zero such that the quotient algebra $\{\cal A\}_\beta /\overline\{J_\{\{\cal A\}_\beta \}(E)\}$ is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras $\lambda _\gamma $ and the algebra $\{\cal A\}\{\cal C\}$ of absolutely continuous functions on $\{\Bbb T\}$, we characterize the closed sets $E\subseteq \{\Bbb T\}$ for which the restriction algebras $\lambda _\gamma (E)$ and $\{\cal A\}\{\cal C\} (E)$ are generated by their idempotents.},
author = {Pedersen, Thomas Vils},
journal = {Annales de l'institut Fourier},
keywords = {Banach algebras of functions; idempotents},
language = {eng},
number = {4},
pages = {1095-1124},
publisher = {Association des Annales de l'Institut Fourier},
title = {Idempotents in quotients and restrictions of Banach algebras of functions},
url = {http://eudml.org/doc/75201},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Pedersen, Thomas Vils
TI - Idempotents in quotients and restrictions of Banach algebras of functions
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 4
SP - 1095
EP - 1124
AB - Let ${\cal A}_\beta $ be the Beurling algebra with weight $(1+\vert n\vert )^\beta $ on the unit circle ${\Bbb T}$ and, for a closed set $E\subseteq {\Bbb T}$, let $J_{{\cal A}_\beta }(E)=\lbrace f\in {\cal A}_\beta :f=0\,\text{on} \text{a} \text{neighbourhood} \text{of}\, E\rbrace $. We prove that, for $\beta >{1\over 2}$, there exists a closed set $E\subseteq {\Bbb T}$ of measure zero such that the quotient algebra ${\cal A}_\beta /\overline{J_{{\cal A}_\beta }(E)}$ is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras $\lambda _\gamma $ and the algebra ${\cal A}{\cal C}$ of absolutely continuous functions on ${\Bbb T}$, we characterize the closed sets $E\subseteq {\Bbb T}$ for which the restriction algebras $\lambda _\gamma (E)$ and ${\cal A}{\cal C} (E)$ are generated by their idempotents.
LA - eng
KW - Banach algebras of functions; idempotents
UR - http://eudml.org/doc/75201
ER -
References
top- [1] W.G. BADE and H.G. DALES, The Wedderburn Decomposition of Some Commutative Banach Algebras, J. Funct. Anal., 107 (1992), 105-121. Zbl0765.46036MR93d:46090
- [2] J.J. BENEDETTO, Spectral Synthesis, Academic Press, New York-London-San Francisco, 1975. Zbl0364.43001
- [3] F.F. BONSALL and J. DUNCAN, Complete Normed Algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0271.46039
- [4] I.M. GELFAND, D.A. RAIKOV and G.E. SHILOV, Commutative Normed Rings, Chelsea Publishing Company, Bronx, New York, 1964.
- [5] L.I. HEDBERG, The Stone-Weierstrass theorem in Lipschitz algebras, Ark. Mat., 8 (1969), 63-72. Zbl0193.10302MR41 #5973
- [6] E. HEWITT and K. STROMBERG, Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. Zbl0137.03202
- [7] J.-P. KAHANE, Séries de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0195.07602MR43 #801
- [8] J.-P. KAHANE and R. SALEM, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. Zbl0112.29304MR28 #3279
- [9] Y. KATZNELSON, An Introduction to Harmonic Analysis, John Wiley & Sons, New York, 1968. Zbl0169.17902MR40 #1734
- [10] P. MALLIAVIN, Impossibilité de la synthèse spectrale sur les groupes abeliens non compacts, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 85-92. Zbl0101.09403MR21 #5854c
- [11] H. MIRKIL, The Work of Silov on Commutative Semi-simple Banach Algebras, volume 20 of Notas de Matemática. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1959. Zbl0090.09301MR33 #3130
- [12] H. MIRKIL, Continuous translation of Hölder and Lipschitz functions, Can. J. Math., 12 (1960), 674-685. Zbl0097.09702MR23 #A1993
- [13] T.V. PEDERSEN, Banach Algebras of Functions on the Circle and the Disc, Ph. D. Dissertation, University of Cambridge, October 1994.
- [14] C.E. RICKART, General Theory of Banach Algebras, D. Van Nostrand Company, Princeton, N.J., 1960. Zbl0095.09702MR22 #5903
- [15] W. RUDIN, Functional Analysis, McGraw-Hill Book Company, New York, 1973. Zbl0253.46001MR51 #1315
- [16] D.R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111 (1964), 240-272. Zbl0121.10204MR28 #4385
- [17] G.E. SHILOV, Homogeneous rings of functions, Amer. Math. Soc. Transl., 92, 1953, Reprinted in Amer. Math. Soc. Transl. (1), 8 (1962), 392-455. Zbl0053.08401
- [18] F. ZOUAKIA, Idéaux fermés de A+ et L1(ℝ+) et propriétés asymptotiques des contractions et des semigroupes contractants, Thèse pour le grade de Docteur d'Etat des Sciences, Université de Bordeaux I, 1990.
- [19] A. ZYGMUND, Trigonometric Series, volume 1, Cambridge University Press, second edition, 1959. Zbl0085.05601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.