Idempotents in quotients and restrictions of Banach algebras of functions

Thomas Vils Pedersen

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 4, page 1095-1124
  • ISSN: 0373-0956

Abstract

top
Let 𝒜 β be the Beurling algebra with weight ( 1 + | n | ) β on the unit circle 𝕋 and, for a closed set E 𝕋 , let J 𝒜 β ( E ) = { f 𝒜 β : f = 0 on a neighbourhood of E } . We prove that, for β > 1 2 , there exists a closed set E 𝕋 of measure zero such that the quotient algebra 𝒜 β / J 𝒜 β ( E ) is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras λ γ and the algebra 𝒜 𝒞 of absolutely continuous functions on 𝕋 , we characterize the closed sets E 𝕋 for which the restriction algebras λ γ ( E ) and 𝒜 𝒞 ( E ) are generated by their idempotents.

How to cite

top

Pedersen, Thomas Vils. "Idempotents in quotients and restrictions of Banach algebras of functions." Annales de l'institut Fourier 46.4 (1996): 1095-1124. <http://eudml.org/doc/75201>.

@article{Pedersen1996,
abstract = {Let $\{\cal A\}_\beta $ be the Beurling algebra with weight $(1+\vert n\vert )^\beta $ on the unit circle $\{\Bbb T\}$ and, for a closed set $E\subseteq \{\Bbb T\}$, let $J_\{\{\cal A\}_\beta \}(E)=\lbrace f\in \{\cal A\}_\beta :f=0\,\text\{on\} \text\{a\} \text\{neighbourhood\} \text\{of\}\, E\rbrace $. We prove that, for $\beta &gt;\{1\over 2\}$, there exists a closed set $E\subseteq \{\Bbb T\}$ of measure zero such that the quotient algebra $\{\cal A\}_\beta /\overline\{J_\{\{\cal A\}_\beta \}(E)\}$ is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras $\lambda _\gamma $ and the algebra $\{\cal A\}\{\cal C\}$ of absolutely continuous functions on $\{\Bbb T\}$, we characterize the closed sets $E\subseteq \{\Bbb T\}$ for which the restriction algebras $\lambda _\gamma (E)$ and $\{\cal A\}\{\cal C\} (E)$ are generated by their idempotents.},
author = {Pedersen, Thomas Vils},
journal = {Annales de l'institut Fourier},
keywords = {Banach algebras of functions; idempotents},
language = {eng},
number = {4},
pages = {1095-1124},
publisher = {Association des Annales de l'Institut Fourier},
title = {Idempotents in quotients and restrictions of Banach algebras of functions},
url = {http://eudml.org/doc/75201},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Pedersen, Thomas Vils
TI - Idempotents in quotients and restrictions of Banach algebras of functions
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 4
SP - 1095
EP - 1124
AB - Let ${\cal A}_\beta $ be the Beurling algebra with weight $(1+\vert n\vert )^\beta $ on the unit circle ${\Bbb T}$ and, for a closed set $E\subseteq {\Bbb T}$, let $J_{{\cal A}_\beta }(E)=\lbrace f\in {\cal A}_\beta :f=0\,\text{on} \text{a} \text{neighbourhood} \text{of}\, E\rbrace $. We prove that, for $\beta &gt;{1\over 2}$, there exists a closed set $E\subseteq {\Bbb T}$ of measure zero such that the quotient algebra ${\cal A}_\beta /\overline{J_{{\cal A}_\beta }(E)}$ is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras $\lambda _\gamma $ and the algebra ${\cal A}{\cal C}$ of absolutely continuous functions on ${\Bbb T}$, we characterize the closed sets $E\subseteq {\Bbb T}$ for which the restriction algebras $\lambda _\gamma (E)$ and ${\cal A}{\cal C} (E)$ are generated by their idempotents.
LA - eng
KW - Banach algebras of functions; idempotents
UR - http://eudml.org/doc/75201
ER -

References

top
  1. [1] W.G. BADE and H.G. DALES, The Wedderburn Decomposition of Some Commutative Banach Algebras, J. Funct. Anal., 107 (1992), 105-121. Zbl0765.46036MR93d:46090
  2. [2] J.J. BENEDETTO, Spectral Synthesis, Academic Press, New York-London-San Francisco, 1975. Zbl0364.43001
  3. [3] F.F. BONSALL and J. DUNCAN, Complete Normed Algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0271.46039
  4. [4] I.M. GELFAND, D.A. RAIKOV and G.E. SHILOV, Commutative Normed Rings, Chelsea Publishing Company, Bronx, New York, 1964. 
  5. [5] L.I. HEDBERG, The Stone-Weierstrass theorem in Lipschitz algebras, Ark. Mat., 8 (1969), 63-72. Zbl0193.10302MR41 #5973
  6. [6] E. HEWITT and K. STROMBERG, Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. Zbl0137.03202
  7. [7] J.-P. KAHANE, Séries de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0195.07602MR43 #801
  8. [8] J.-P. KAHANE and R. SALEM, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. Zbl0112.29304MR28 #3279
  9. [9] Y. KATZNELSON, An Introduction to Harmonic Analysis, John Wiley & Sons, New York, 1968. Zbl0169.17902MR40 #1734
  10. [10] P. MALLIAVIN, Impossibilité de la synthèse spectrale sur les groupes abeliens non compacts, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 85-92. Zbl0101.09403MR21 #5854c
  11. [11] H. MIRKIL, The Work of Silov on Commutative Semi-simple Banach Algebras, volume 20 of Notas de Matemática. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1959. Zbl0090.09301MR33 #3130
  12. [12] H. MIRKIL, Continuous translation of Hölder and Lipschitz functions, Can. J. Math., 12 (1960), 674-685. Zbl0097.09702MR23 #A1993
  13. [13] T.V. PEDERSEN, Banach Algebras of Functions on the Circle and the Disc, Ph. D. Dissertation, University of Cambridge, October 1994. 
  14. [14] C.E. RICKART, General Theory of Banach Algebras, D. Van Nostrand Company, Princeton, N.J., 1960. Zbl0095.09702MR22 #5903
  15. [15] W. RUDIN, Functional Analysis, McGraw-Hill Book Company, New York, 1973. Zbl0253.46001MR51 #1315
  16. [16] D.R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111 (1964), 240-272. Zbl0121.10204MR28 #4385
  17. [17] G.E. SHILOV, Homogeneous rings of functions, Amer. Math. Soc. Transl., 92, 1953, Reprinted in Amer. Math. Soc. Transl. (1), 8 (1962), 392-455. Zbl0053.08401
  18. [18] F. ZOUAKIA, Idéaux fermés de A+ et L1(ℝ+) et propriétés asymptotiques des contractions et des semigroupes contractants, Thèse pour le grade de Docteur d'Etat des Sciences, Université de Bordeaux I, 1990. 
  19. [19] A. ZYGMUND, Trigonometric Series, volume 1, Cambridge University Press, second edition, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.