The overdetermined Cauchy problem
Chiara Boiti; Mauro Nacinovich
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 1, page 155-199
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoiti, Chiara, and Nacinovich, Mauro. "The overdetermined Cauchy problem." Annales de l'institut Fourier 47.1 (1997): 155-199. <http://eudml.org/doc/75225>.
@article{Boiti1997,
abstract = {We consider the (characteristic and non-characteristic) Cauchy problem for a system of constant coefficients partial differential equations with initial data on an affine subspace of arbitrary codimension. We show that evolution is equivalent to the validity of a principle on the complex characteristic variety and we study the relationship of this condition with the one introduced by Hörmander in the case of scalar operators and initial data on a hypersurface.},
author = {Boiti, Chiara, Nacinovich, Mauro},
journal = {Annales de l'institut Fourier},
keywords = {overdetermined systems; Cauchy problem; Phragmén-Lindelöf principle},
language = {eng},
number = {1},
pages = {155-199},
publisher = {Association des Annales de l'Institut Fourier},
title = {The overdetermined Cauchy problem},
url = {http://eudml.org/doc/75225},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Boiti, Chiara
AU - Nacinovich, Mauro
TI - The overdetermined Cauchy problem
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 1
SP - 155
EP - 199
AB - We consider the (characteristic and non-characteristic) Cauchy problem for a system of constant coefficients partial differential equations with initial data on an affine subspace of arbitrary codimension. We show that evolution is equivalent to the validity of a principle on the complex characteristic variety and we study the relationship of this condition with the one introduced by Hörmander in the case of scalar operators and initial data on a hypersurface.
LA - eng
KW - overdetermined systems; Cauchy problem; Phragmén-Lindelöf principle
UR - http://eudml.org/doc/75225
ER -
References
top- [AHLM] A. ANDREOTTI, C. D. HILL, S. LOJASIEWICZ, B. MACKICHAN, Complexes of Differential operators. The Majer Vietoris sequence, Invent. Math., 26 (1976), 43-86. Zbl0332.58016MR54 #11404
- [AN1] A. ANDREOTTI, M. NACINOVICH, Analytic convexity, Ann. S.N.S. Pisa, IV, vol. VII, n. 2 (1980). Zbl0435.35039MR81m:32025
- [AN2] A. ANDREOTTI, M. NACINOVICH, Analytic Convexity and the Principle of Phragmén-Lindelöf, Quaderni della Scuola Normale Superiore, Pisa (1980). Zbl0458.35004
- [AN3] A. ANDREOTTI, M. NACINOVICH, Noncharacteristic hypersurfaces for complexes of differential operators, Ann. Mat. Pura e Appl., (IV), 125 (1980), 13-83. Zbl0456.58024MR83e:58079
- [AT] A. ANDREOTTI, G. TOMASSINI, Spazi vettoriali topologici, Quaderni dell'Unione Matematica Italiana, Bologna (1978).
- [Bae] A. BAERNSTEIN II, Representation of holomorphic functions by boundary integrals, Transact. AMS, 160 (1971), 27-37. Zbl0225.30044MR44 #415
- [BMS] K.D. BIERSTEDT, R. MEISE, W.H. SUMMERS, A projective description of weighted inductive limits, Transact. AMS, 272 (1982), 107-160. Zbl0599.46026MR84g:46037
- [BN] C. BOITI, M. NACINOVICH, Evolution and hyperbolic pairs, Preprint n. 2.185.836, Sezione di Analisi Matematica e Probabilità, Dipartimento di Matematica, Università di Pisa, Dicembre 1994.
- [Eh] L. EHRENPREIS, Fourier analysis in several complex variables, Wiley-Interscience Publisher, New York, 1970. Zbl0195.10401MR44 #3066
- [FW] K. FLORET, J. WLOKA, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Mathematics, 56, Springer, 1968. Zbl0155.45101MR37 #1945
- [F] U. FRANKEN, On the equivalence of holomorphic and plurisubharmonic Phragmén-Lindelöf principles, Michigan Math. J., 42 (1995), 163-173. Zbl0839.32007MR96d:32014
- [GS] I.M. GEL'FAND e G.E. SHILOV, Generalized functions, vol. 1, 2, Academic Press, New York, 1967.
- [GR] H. GRAUERT, R. REMMERT, Coherent Analytic Sheaves, Springer, 1984, Grundlehren. Zbl0537.32001MR86a:32001
- [Gr] A. GROTHENDIECK, Espaces vectoriels topologiques, Sociatade de Matemática de S.Paulo, São Paulo, 1964.
- [Hö1] L. HÖRMANDER, The analysis of linear partial differential operators, vol. I, II, Springer-Verlag, Berlin, 1983. Zbl0521.35001
- [Hö2] L. HÖRMANDER, On the existence of analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21 (1973), 151-182. Zbl0282.35015MR49 #817
- [Hö3] L. HÖRMANDER, Complex analysis in several variables, 3a ediz., North-Holland, Amsterdam, 1991.
- [Hö4] L. HÖRMANDER, Notions of convexity, Birkhäuser, Boston, 1994. Zbl0835.32001
- [Ko] H. KOMATSU, Projective and inductive limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1967), 366-383. Zbl0168.10603MR36 #646
- [Kr] S.G. KRANTZ, Function theory of several complex variables, A Wiley-Interscience publication, Pure & Applied Mathematics, New York, 1982. Zbl0471.32008MR84c:32001
- [MTV] R. MEISE, B.A. TAYLOR, D. VOGT, Equivalence of Analytic and Plurisubharmonic Phragmén-Lindelöf Conditions, Proceedings of Symposia in Pure Mathematics, vol. 52 (1991), Part 3. Zbl0745.32004MR93a:32023
- [N1] M. NACINOVICH, On boundary Hilbert differential complexes, Annales Polonici Mathematici, XLVI (1985). Zbl0606.58046MR88a:58184
- [N2] M. NACINOVICH, Cauchy problem for overdetermined systems, Annali di Matematica pura ed applicata, (IV), vol. CLVI (1990), 265-321. Zbl0734.35054MR92a:35117
- [N3] M. NACINOVICH, Overdetermined Hyperbolic Systems on l.e. Convex Sets, Rend. Sem. Mat. Univ. Padova, vol. 83 (1990). Zbl0736.35019MR91f:35189
- [N4] M. NACINOVICH, Approximation and extension of Whitney CR forms in “Complex Analysis and Geometry”, pp. 271-283, Plenum Press, N.Y., 1993. Zbl0802.32025MR94a:32024
- [Pa] V. P. PALAMODOV, Linear differential operators with constant coefficients, Springer Verlag, Berlin, 1970. Zbl0191.43401MR41 #8793
- [Sc] H.H. SCHAEFER, Topological vector spaces, The Macmillan Company, New-York, 1966. Zbl0141.30503MR33 #1689
- [Sch] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966.
- [Tou] J.C. TOUGERON, Idéaux de fonctions différentiables, Springer-Verlag, Berlin, 1972. Zbl0251.58001MR55 #13472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.