p -adic interpolation of convolutions of Hilbert modular forms

Volker Dünger

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 2, page 365-428
  • ISSN: 0373-0956

Abstract

top
In this paper we construct p -adic measures related to the values of convolutions of Hilbert modular forms of integral and half-integral weight at the negative critical points under the assumption that the underlying totally real number field F has class number h F = 1 . This extends the result of Panchishkin [Lecture Notes in Math., 1471, Springer Verlag, 1991 ] who treated the case that both modular forms are of integral weight. In order to define the measures, we need to introduce the twist operator and a certain inverter j on the space of Hilbert modular forms of half-integral weight. The proof then makes use of the Rankin-Selberg integral representation of the convolution and of explicit formulas for the Fourier coefficients of certain Eisenstein series of half-integral weight derived by Shimura [Duke Math. J., 52 (1985), 281-314].

How to cite

top

Dünger, Volker. "$p$-adic interpolation of convolutions of Hilbert modular forms." Annales de l'institut Fourier 47.2 (1997): 365-428. <http://eudml.org/doc/75233>.

@article{Dünger1997,
abstract = {In this paper we construct $p$-adic measures related to the values of convolutions of Hilbert modular forms of integral and half-integral weight at the negative critical points under the assumption that the underlying totally real number field $F$ has class number $h_F=1$. This extends the result of Panchishkin [Lecture Notes in Math., 1471, Springer Verlag, 1991 ] who treated the case that both modular forms are of integral weight. In order to define the measures, we need to introduce the twist operator and a certain inverter $j$ on the space of Hilbert modular forms of half-integral weight. The proof then makes use of the Rankin-Selberg integral representation of the convolution and of explicit formulas for the Fourier coefficients of certain Eisenstein series of half-integral weight derived by Shimura [Duke Math. J., 52 (1985), 281-314].},
author = {Dünger, Volker},
journal = {Annales de l'institut Fourier},
keywords = {-adic interpolation; Hilbert modular forms; half-integral weight; convolution},
language = {eng},
number = {2},
pages = {365-428},
publisher = {Association des Annales de l'Institut Fourier},
title = {$p$-adic interpolation of convolutions of Hilbert modular forms},
url = {http://eudml.org/doc/75233},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Dünger, Volker
TI - $p$-adic interpolation of convolutions of Hilbert modular forms
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 2
SP - 365
EP - 428
AB - In this paper we construct $p$-adic measures related to the values of convolutions of Hilbert modular forms of integral and half-integral weight at the negative critical points under the assumption that the underlying totally real number field $F$ has class number $h_F=1$. This extends the result of Panchishkin [Lecture Notes in Math., 1471, Springer Verlag, 1991 ] who treated the case that both modular forms are of integral weight. In order to define the measures, we need to introduce the twist operator and a certain inverter $j$ on the space of Hilbert modular forms of half-integral weight. The proof then makes use of the Rankin-Selberg integral representation of the convolution and of explicit formulas for the Fourier coefficients of certain Eisenstein series of half-integral weight derived by Shimura [Duke Math. J., 52 (1985), 281-314].
LA - eng
KW - -adic interpolation; Hilbert modular forms; half-integral weight; convolution
UR - http://eudml.org/doc/75233
ER -

References

top
  1. [D] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, in: Proc. of Symp. in Pure Math., 33 (1979), Part 2, 313-346. Zbl0449.10022MR81d:12009
  2. [DR] P. DELIGNE, K.A. RIBET, Values of abelian L-functions at negative integers over totally real fields, Inventiones Math., 59 (1980), 227-286. Zbl0434.12009MR81m:12019
  3. [G] R. GREENBERG, Motives, in: Proc. of Symp. in Pure Math., 55 (1994), Part 2, 193-223. Zbl0819.11046
  4. [H] E. HECKE, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea, 1948. Zbl0041.01102JFM49.0106.10
  5. [Hi] H. HIDA, On Λ-adic forms of half integral weight for SL2/Q, in: Number Theory Paris 1992-1993, editor S. David, LMSLN 215, 139-166 (1995), Cambridge Univ. Press. Zbl0838.11031
  6. [I] J. IM, Special values of Dirichlet series attached to Hilbert modular forms, Am. J. Math., 113 (1991), 975-1017. Zbl0756.11014MR92k:11054
  7. [K] N. KATZ, p-adic L-functions for CM fields, Inventiones Math., 49 (1978), 199-297. Zbl0417.12003MR80h:10039
  8. [Kob] N. KOBLITZ, Introduction to Elliptic Curves and Modular Forms, Second Edition, GTM 97, Springer Verlag, 1993. Zbl0804.11039MR94a:11078
  9. [Koh] W. KOHNEN, Newforms of half-integral weight, J. Reine Angew. Math., 333 (1982), 32-72. Zbl0475.10025MR84b:10038
  10. [M] T. MIYAKE, Modular forms, Springer Verlag, 1989. Zbl0701.11014
  11. [MRV] M. MANICKAM, B. RAMAKRISHNAN, T.C. VASUVEDAN, On the theory of new-forms of half-integral weight, J. Number Th., 34 (1990), 210-224. Zbl0704.11013
  12. [N] J. NEUKIRCH, Algebraische Zahlentheorie, Springer Verlag, 1992. Zbl0747.11001
  13. [P] A. PANCHISHKIN, Non-archimedean L-functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics 1471, Springer Verlag, 1991. Zbl0732.11026MR93a:11044
  14. [S1] G. SHIMURA, On modular forms of half-integral weight, Ann. of Math., 97 (1973), 440-481. Zbl0266.10022MR48 #10989
  15. [S2] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), 79-98. Zbl0311.10029MR52 #3064
  16. [S3] G. SHIMURA, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. Zbl0348.10015MR55 #7925
  17. [S4] G. SHIMURA, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679. Zbl0394.10015MR80a:10043
  18. [S5] G. SHIMURA, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302. Zbl0502.10013MR84f:32040
  19. [S6] G. SHIMURA, On Einsenstein Series of half-integral weight, Duke Math. J., 52 (1985), 281-314. Zbl0577.10025MR87g:11053
  20. [S7] G. SHIMURA, On Hilbert modular forms of half-integral weight, Duke Math. J., 55 (1987), 765-838. Zbl0636.10024MR89a:11054
  21. [S8] G. SHIMURA, On the Fourier coefficients of Hilbert modular forms of half-integral weight, Duke Math. J., 71 (1993), 501-557. Zbl0802.11017MR94e:11046
  22. [U] M. UEDA, On twisting operators and newforms of half-integral weight, Nagoya Math. J., 131 (1993), 135-205. Zbl0778.11027MR95a:11040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.