-adic interpolation of convolutions of Hilbert modular forms
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 2, page 365-428
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDünger, Volker. "$p$-adic interpolation of convolutions of Hilbert modular forms." Annales de l'institut Fourier 47.2 (1997): 365-428. <http://eudml.org/doc/75233>.
@article{Dünger1997,
abstract = {In this paper we construct $p$-adic measures related to the values of convolutions of Hilbert modular forms of integral and half-integral weight at the negative critical points under the assumption that the underlying totally real number field $F$ has class number $h_F=1$. This extends the result of Panchishkin [Lecture Notes in Math., 1471, Springer Verlag, 1991 ] who treated the case that both modular forms are of integral weight. In order to define the measures, we need to introduce the twist operator and a certain inverter $j$ on the space of Hilbert modular forms of half-integral weight. The proof then makes use of the Rankin-Selberg integral representation of the convolution and of explicit formulas for the Fourier coefficients of certain Eisenstein series of half-integral weight derived by Shimura [Duke Math. J., 52 (1985), 281-314].},
author = {Dünger, Volker},
journal = {Annales de l'institut Fourier},
keywords = {-adic interpolation; Hilbert modular forms; half-integral weight; convolution},
language = {eng},
number = {2},
pages = {365-428},
publisher = {Association des Annales de l'Institut Fourier},
title = {$p$-adic interpolation of convolutions of Hilbert modular forms},
url = {http://eudml.org/doc/75233},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Dünger, Volker
TI - $p$-adic interpolation of convolutions of Hilbert modular forms
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 2
SP - 365
EP - 428
AB - In this paper we construct $p$-adic measures related to the values of convolutions of Hilbert modular forms of integral and half-integral weight at the negative critical points under the assumption that the underlying totally real number field $F$ has class number $h_F=1$. This extends the result of Panchishkin [Lecture Notes in Math., 1471, Springer Verlag, 1991 ] who treated the case that both modular forms are of integral weight. In order to define the measures, we need to introduce the twist operator and a certain inverter $j$ on the space of Hilbert modular forms of half-integral weight. The proof then makes use of the Rankin-Selberg integral representation of the convolution and of explicit formulas for the Fourier coefficients of certain Eisenstein series of half-integral weight derived by Shimura [Duke Math. J., 52 (1985), 281-314].
LA - eng
KW - -adic interpolation; Hilbert modular forms; half-integral weight; convolution
UR - http://eudml.org/doc/75233
ER -
References
top- [D] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, in: Proc. of Symp. in Pure Math., 33 (1979), Part 2, 313-346. Zbl0449.10022MR81d:12009
- [DR] P. DELIGNE, K.A. RIBET, Values of abelian L-functions at negative integers over totally real fields, Inventiones Math., 59 (1980), 227-286. Zbl0434.12009MR81m:12019
- [G] R. GREENBERG, Motives, in: Proc. of Symp. in Pure Math., 55 (1994), Part 2, 193-223. Zbl0819.11046
- [H] E. HECKE, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea, 1948. Zbl0041.01102JFM49.0106.10
- [Hi] H. HIDA, On Λ-adic forms of half integral weight for SL2/Q, in: Number Theory Paris 1992-1993, editor S. David, LMSLN 215, 139-166 (1995), Cambridge Univ. Press. Zbl0838.11031
- [I] J. IM, Special values of Dirichlet series attached to Hilbert modular forms, Am. J. Math., 113 (1991), 975-1017. Zbl0756.11014MR92k:11054
- [K] N. KATZ, p-adic L-functions for CM fields, Inventiones Math., 49 (1978), 199-297. Zbl0417.12003MR80h:10039
- [Kob] N. KOBLITZ, Introduction to Elliptic Curves and Modular Forms, Second Edition, GTM 97, Springer Verlag, 1993. Zbl0804.11039MR94a:11078
- [Koh] W. KOHNEN, Newforms of half-integral weight, J. Reine Angew. Math., 333 (1982), 32-72. Zbl0475.10025MR84b:10038
- [M] T. MIYAKE, Modular forms, Springer Verlag, 1989. Zbl0701.11014
- [MRV] M. MANICKAM, B. RAMAKRISHNAN, T.C. VASUVEDAN, On the theory of new-forms of half-integral weight, J. Number Th., 34 (1990), 210-224. Zbl0704.11013
- [N] J. NEUKIRCH, Algebraische Zahlentheorie, Springer Verlag, 1992. Zbl0747.11001
- [P] A. PANCHISHKIN, Non-archimedean L-functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics 1471, Springer Verlag, 1991. Zbl0732.11026MR93a:11044
- [S1] G. SHIMURA, On modular forms of half-integral weight, Ann. of Math., 97 (1973), 440-481. Zbl0266.10022MR48 #10989
- [S2] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), 79-98. Zbl0311.10029MR52 #3064
- [S3] G. SHIMURA, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. Zbl0348.10015MR55 #7925
- [S4] G. SHIMURA, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679. Zbl0394.10015MR80a:10043
- [S5] G. SHIMURA, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302. Zbl0502.10013MR84f:32040
- [S6] G. SHIMURA, On Einsenstein Series of half-integral weight, Duke Math. J., 52 (1985), 281-314. Zbl0577.10025MR87g:11053
- [S7] G. SHIMURA, On Hilbert modular forms of half-integral weight, Duke Math. J., 55 (1987), 765-838. Zbl0636.10024MR89a:11054
- [S8] G. SHIMURA, On the Fourier coefficients of Hilbert modular forms of half-integral weight, Duke Math. J., 71 (1993), 501-557. Zbl0802.11017MR94e:11046
- [U] M. UEDA, On twisting operators and newforms of half-integral weight, Nagoya Math. J., 131 (1993), 135-205. Zbl0778.11027MR95a:11040
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.