Families of curves and alterations
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 2, page 599-621
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDe Jong, A. Johan. "Families of curves and alterations." Annales de l'institut Fourier 47.2 (1997): 599-621. <http://eudml.org/doc/75239>.
@article{DeJong1997,
abstract = {In this article it is shown that any family of curves can be altered into a semi-stable family. This implies that if $S$ is an excellent scheme of dimension at most 2 and $X$ is a separated integral scheme of finite type over $S$, then $X$ can be altered into a regular scheme. This result is stronger then the results of [ Smoothness, semi-stability and alterations to appear in Publ. Math. IHES]. In addition we deal with situations where a finite group acts.},
author = {De Jong, A. Johan},
journal = {Annales de l'institut Fourier},
keywords = {family of curves; alterations; group actions},
language = {eng},
number = {2},
pages = {599-621},
publisher = {Association des Annales de l'Institut Fourier},
title = {Families of curves and alterations},
url = {http://eudml.org/doc/75239},
volume = {47},
year = {1997},
}
TY - JOUR
AU - De Jong, A. Johan
TI - Families of curves and alterations
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 2
SP - 599
EP - 621
AB - In this article it is shown that any family of curves can be altered into a semi-stable family. This implies that if $S$ is an excellent scheme of dimension at most 2 and $X$ is a separated integral scheme of finite type over $S$, then $X$ can be altered into a regular scheme. This result is stronger then the results of [ Smoothness, semi-stability and alterations to appear in Publ. Math. IHES]. In addition we deal with situations where a finite group acts.
LA - eng
KW - family of curves; alterations; group actions
UR - http://eudml.org/doc/75239
ER -
References
top- [1] A.J. de JONG, Smoothness, semi-stability and alterations, Publications Mathématiques I.H.E.S. Zbl0916.14005
- [2] A.J. de JONG and F. OORT, On extending families of curves, to appear in Journal of Algebraic Geometry. Zbl0922.14017
- [3] N.M. KATZ and B. MAZUR, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press (1985). Zbl0576.14026MR86i:11024
- [4] J. LIPMAN, Desingularization of two-dimensional schemes, Annals of Mathematics, 107(1978), 151-207. Zbl0349.14004MR58 #10924
- [5] D. MUMFORD and J. FOGARTY, Geometric invariant theory, Second Enlarged Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer Verlag (1982). Zbl0504.14008MR86a:14006
- [6] M. RAYNAUD and L. GRUSON, Critères de platitude et de projectivité, Techniques de "platification" d'un module, Inventiones Mathematicae, 13 (1971), 1-89. Zbl0227.14010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.