Berkovich p -adic analytic spaces

Antoine Ducros

Séminaire Bourbaki (2005-2006)

  • Volume: 48, page 137-176
  • ISSN: 0303-1179

Abstract

top
Fifteen years ago, Berkovich suggested a new viewpoint on analytic geometry over a non-archimedean complete field ; the main difference between this viewpoint and the preceeding ones is that Berkovich’s spaces are locally compact and locally arcwise connected. This approach has been very fruitful ; for example it had applications to vanishing cycles, or to some p -adic analogous of classical complex theories : potential, dessins d’enfants, integration along a path, dynamical systems...

How to cite

top

Ducros, Antoine. "Espaces analytiques $p$-adiques au sens de Berkovich." Séminaire Bourbaki 48 (2005-2006): 137-176. <http://eudml.org/doc/252177>.

@article{Ducros2005-2006,
abstract = {Il y a une quinzaine d’années, Berkovich a proposé une nouvelle approche de la géométrie analytique sur un corps ultramétrique complet. Elle fournit, contrairement aux précédentes, des espaces localement compacts et localement connexes par arcs. Elle s’est révélée particulièrement fructueuse pour l’étude d’une grande variété de questions ; citons par exemple les cycles évanescents ou quelques analogues $p$-adiques de théories classiques : potentiel, dessins d’enfants, intégration le long d’un chemin, systèmes dynamiques...},
author = {Ducros, Antoine},
journal = {Séminaire Bourbaki},
keywords = {$p$-adic analytic geometry; rigid geometry},
language = {fre},
pages = {137-176},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Espaces analytiques $p$-adiques au sens de Berkovich},
url = {http://eudml.org/doc/252177},
volume = {48},
year = {2005-2006},
}

TY - JOUR
AU - Ducros, Antoine
TI - Espaces analytiques $p$-adiques au sens de Berkovich
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 137
EP - 176
AB - Il y a une quinzaine d’années, Berkovich a proposé une nouvelle approche de la géométrie analytique sur un corps ultramétrique complet. Elle fournit, contrairement aux précédentes, des espaces localement compacts et localement connexes par arcs. Elle s’est révélée particulièrement fructueuse pour l’étude d’une grande variété de questions ; citons par exemple les cycles évanescents ou quelques analogues $p$-adiques de théories classiques : potentiel, dessins d’enfants, intégration le long d’un chemin, systèmes dynamiques...
LA - fre
KW - $p$-adic analytic geometry; rigid geometry
UR - http://eudml.org/doc/252177
ER -

References

top
  1. [1] Y. André – “On a geometric description of Gal ( 𝐐 ¯ p / 𝐐 p ) and a p -adic avatar of G T ^ ”, Duke Math. J. 119 (2003), no. 1, p. 1–39. Zbl1155.11356MR1991645
  2. [2] M. Baker & R. Rumely – “Analysis and dynamics on the Berkovich projective line”, prépublication. 
  3. [3] —, “Equidistribution of small points, rational dynamics, and potential theory”, prépublication. Zbl1234.11082
  4. [4] —, “Harmonic Analysis on Metrized graphs”, prépublication. 
  5. [5] V. G. Berkovich – “Integration of one-forms on p -adic analytic spaces”, prépublication. Zbl1161.14001MR2263704
  6. [6] —, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, Amer. Math. Soc., Providence, 1990. Zbl0715.14013MR1070709
  7. [7] —, “Étale cohomology for non-Archimedean analytic spaces”, Inst. Hautes Études Sci. Publ. Math.78 (1993), p. 5–161. Zbl0804.32019MR1259429
  8. [8] —, “Vanishing cycles for formal schemes”, Invent. Math. 115 (1994), no. 3, p. 539–571. Zbl0791.14008MR1262943
  9. [9] —, “On the comparison theorem for étale cohomology of non-Archimedean analytic spaces”, Israel J. Math. 92 (1995), no. 1-3, p. 45–59. Zbl0864.14011MR1357745
  10. [10] —, “Vanishing cycles for formal schemes. II”, Invent. Math. 125 (1996), no. 2, p. 367–390. Zbl0852.14002MR1395723
  11. [11] —, “Vanishing cycles for non-Archimedean analytic spaces”, J. Amer. Math. Soc. 9 (1996), no. 4, p. 1187–1209. Zbl0988.14004MR1376692
  12. [12] —, “ p -adic analytic spaces”, in Proceedings of the International Congress of Mathematicians (Berlin 1998), vol. II (extra vol.), 1998, p. 141–151 (electronic). Zbl0894.00032MR1648064
  13. [13] —, “Smooth p -adic analytic spaces are locally contractible I”, Invent. Math. 137 (1999), no. 1, p. 1–84. Zbl0930.32016MR1702143
  14. [14] —, “Smooth p -adic analytic spaces are locally contractible II”, in Geometric aspects of Dwork theory, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, p. 293–370 (vols. I, II). Zbl1060.32010
  15. [15] S. Bloch, H. Gillet & C. Soulé – “Non-Archimedean Arakelov theory”, J. Algebraic Geom. 4 (1995), no. 3, p. 427–485. Zbl0866.14011MR1325788
  16. [16] S. Bosch, U. Güntzer & R. Remmert – Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, vol. 261, Springer-Verlag, Berlin, 1984. Zbl0539.14017MR746961
  17. [17] S. Bosch & W. Lütkebohmert – “Stable reduction and uniformization of abelian varieties. II”, Invent. Math. 78 (1984), no. 2, p. 257–297. Zbl0554.14015MR767194
  18. [18] —, “Stable reduction and uniformization of abelian varieties. I”, Math. Ann. 270 (1985), no. 3, p. 349–379. Zbl0554.14012MR774362
  19. [19] —, “Formal and rigid geometry I. Rigid spaces”, Math. Ann. 295 (1993), no. 2, p. 291–317. Zbl0808.14017MR1202394
  20. [20] —, “Formal and rigid geometry II. Flattening techniques”, Math. Ann. 296 (1993), no. 3, p. 403–429. Zbl0808.14018MR1225983
  21. [21] S. Bosch, W. Lütkebohmert & M. Raynaud – “Formal and rigid geometry III. The relative maximum principle”, Math. Ann. 302 (1995), no. 1, p. 1–29. Zbl0839.14013MR1329445
  22. [22] —, “Formal and rigid geometry IV. The reduced fibre theorem”, Invent. Math. 119 (1995), no. 2, p. 361–398. Zbl0839.14014MR1312505
  23. [23] P. Boyer – “Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale”, Invent. Math. 138 (1999), no. 3, p. 573–629. Zbl1161.11408MR1719811
  24. [24] H. Carayol – “Nonabelian Lubin-Tate theory”, in Automorphic forms, Shimura varieties, and L -functions (Ann Arbor 1988), Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, p. 15–39 (vol. II). Zbl0704.11049MR1044827
  25. [25] A. Chambert-Loir – “Mesures et équidistribution sur les espaces de Berkovich”, J. reine angew. Math. 595 (2006), p. 215–235. Zbl1112.14022MR2244803
  26. [26] W. Cherry – “Non-Archimedean big Picard theorems”, prépublication sur ArXiv, math.AG/0207081. MR2882389
  27. [27] —, “Non-Archimedean analytic curves in abelian varieties”, Math. Ann. 300 (1994), no. 3, p. 393–404. Zbl0808.14019MR1304429
  28. [28] —, “A survey of Nevanlinna theory over non-Archimedean fields”, Bull. Hong Kong Math. Soc. 1 (1997), no. 2, p. 235–249. Zbl0946.30030MR1605198
  29. [29] W. Cherry & M. Ru – “Rigid analytic Picard theorems”, Amer. J. Math. 126 (2004), no. 4, p. 873–889. Zbl1055.32013MR2075485
  30. [30] B. Chiarellotto – “Espaces de Berkovich et équations différentielles p -adiques. Une note”, Rend. Sem. Mat. Univ. Padova103 (2000), p. 193–209. Zbl0974.12014MR1789539
  31. [31] R. F. Coleman – “Dilogarithms, regulators and p -adic L -functions”, Invent. Math. 69 (1982), no. 2, p. 171–208. Zbl0516.12017MR674400
  32. [32] J.-L. Colliot-Thélène & R. Parimala – “Real components of algebraic varieties and étale cohomology”, Invent. Math. 101 (1990), no. 1, p. 81–99. Zbl0726.14013MR1055712
  33. [33] A. Ducros – “Triangulations et cohomologie étale sur une courbe analytique”, article actuellement soumis. Zbl1163.14018
  34. [34] —, “Cohomologie non ramifiée sur une courbe p -adique lisse”, Compositio Math. 130 (2002), no. 1, p. 89–117. Zbl1057.14021MR1883693
  35. [35] —, “Image réciproque du squelette par un morphisme entre espaces de Berkovich de même dimension”, Bull. Soc. Math. France 131 (2003), no. 4, p. 483–506. Zbl1068.14024MR2044492
  36. [36] —, “Parties semi-algébriques d’une variété algébrique p -adique”, Manuscripta Math. 111 (2003), no. 4, p. 513–528. Zbl1020.14017MR2002825
  37. [37] A. Escassut & N. Mai Netti – “Shilov boundary for normed algebras”, in Topics in analysis and its applications, NATO Sci. Ser. II Math. Phys. Chem., vol. 147, Kluwer Acad. Publ., Dordrecht, 2004, p. 1–10. Zbl1085.46051MR2157105
  38. [38] C. Favre & M. Jonsson – The valuative tree, Lect. Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. Zbl1064.14024MR2097722
  39. [39] —, “Valuative analysis of planar plurisubharmonic functions”, Invent. Math. 162 (2005), no. 2, p. 271–311. Zbl1089.32032MR2199007
  40. [40] C. Favre & J. Rivera-Letelier – “Théorème d’équidistribution de Brolin en dynamique p -adique”, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, p. 271–276. Zbl1052.37039MR2092012
  41. [41] —, “Équidistribution quantitative des points de petite hauteur sur la droite projective”, Math. Ann. 335 (2006), no. 2, p. 311–361. Zbl1175.11029MR2221116
  42. [42] H. Gillet & C. Soulé – “Direct images in non-Archimedean Arakelov theory”, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, p. 363–399. Zbl0969.14015MR1775354
  43. [43] W. Gubler – “Local heights of subvarieties over non-Archimedean fields”, J. reine angew. Math. 498 (1998), p. 61–113. Zbl0906.14013MR1629925
  44. [44] B. Guennebaud – “Sur une notion de spectre pour les algèbres normées ultramétriques”, Thèse, Université de Poitiers, 1973. 
  45. [45] M. Harris – “Supercuspidal representations in the cohomology of Drinfeld upper half spaces ; elaboration of Carayol’s program”, Invent. Math.129 (1997), p. 75–119. Zbl0886.11029MR1464867
  46. [46] M. Harris & R. Taylor – The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, avec un appendice de V.G. Berkovich. Zbl1036.11027MR1876802
  47. [47] T. Hausberger – “Uniformisation des variétés de Laumon-Rapoport-Stuhler et conjecture de Drinfeld-Carayol”, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 4, p. 1285–1371. Zbl1138.11329MR2157169
  48. [48] R. Huber – Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996. Zbl0868.14010MR1734903
  49. [49] I. Itenberg – “Amibes de variétés algébriques et dénombrement de courbes (d’après G. Mikhalkin)”, in Séminaire Bourbaki (2003/2004), Astérisque, vol. 294, Soc. Math. France, Paris, 2004, p. 335–361. Zbl1059.14067MR2111649
  50. [50] A. J. de Jong – “Étale fundamental groups of non-Archimedean analytic spaces”, Compositio Math. 97 (1995), no. 1-2, p. 89–118, Special issue in honour of Frans Oort. Zbl0864.14012MR1355119
  51. [51] —, “Families of curves and alterations”, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, p. 599–621. Zbl0868.14012MR1450427
  52. [52] K. Kato – “A Hasse principle for two-dimensional global fields”, J. reine angew. Math. 366 (1986), p. 142–183, avec un appendice de Jean-Louis Colliot-Thélène. Zbl0576.12012MR833016
  53. [53] M. Kontsevich & Y. Soibelman – “Affine structures and non-Archimedean analytic spaces”, in The unity of mathematics, Progr. Math., vol. 244, Birkhäuser, Boston, 2006, p. 321–385. Zbl1114.14027MR2181810
  54. [54] N. Maïnetti – “Sequential compactness of some analytic spaces”, J. Anal.8 (2000), p. 39–54. Zbl0987.46052MR1806394
  55. [55] —, “Metrizability of some analytic affine spaces”, in p -adic functional analysis (Ioannina, 2000), Lect. Notes in Pure and Appl. Math., vol. 222, Dekker, New York, 2001, p. 219–225. Zbl0994.46025MR1838293
  56. [56] M. Raynaud – “Géométrie analytique rigide d’après Tate, Kiehl, ...”, in Table Ronde d’Analyse non archimédienne (Paris 1972), Mém. Soc. Math. France, vol. 39–40, Soc. Math. France, Paris, 1974, p. 319–327. Zbl0299.14003MR470254
  57. [57] J. Rivera-Letelier – “Théorie de Julia et Fatou sur la droite hyperbolique p -adique”, en préparation. 
  58. [58] —, “Dynamique des fonctions rationnelles sur des corps locaux”, in Geometric methods in dynamics II, Astérisque, vol. 287, Soc. Math. France, Paris, 2003, p. 147–230. Zbl1140.37336MR2040006
  59. [59] —, “Espace hyperbolique p -adique et dynamique des fonctions rationnelles”, Compositio Math. 138 (2003), no. 2, p. 199–231. Zbl1041.37021MR2018827
  60. [60] —, “Points périodiques des fonctions rationnelles dans l’espace hyperbolique p -adique”, Comment. Math. Helv. 80 (2005), no. 3, p. 593–629. Zbl1140.37337MR2165204
  61. [61] L. Szpiro, E. Ullmo & S. Zhang – “Équirépartition des petits points”, Invent. Math. 127 (1997), no. 2, p. 337–347. Zbl0991.11035MR1427622
  62. [62] J. Tate – “Rigid analytic spaces”, Invent. Math.12 (1971), p. 257–289. Zbl0212.25601MR306196
  63. [63] M. Temkin – “On local properties of non-Archimedean analytic spaces”, Math. Ann. 318 (2000), no. 3, p. 585–607. Zbl0972.32019MR1800770
  64. [64] —, “On local properties of non-Archimedean analytic spaces. II”, Israel J. Math.140 (2004), p. 1–27. Zbl1066.32025MR2054837
  65. [65] —, “A new proof of the Gerritzen-Grauert theorem”, Math. Ann. 333 (2005), no. 2, p. 261–269. Zbl1080.32021MR2195115
  66. [66] A. Thuillier – “Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov”, Thèse, IRMAR, Université Rennes 1, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.