Estimates of the number of rational mappings from a fixed variety to varieties of general type

Tanya Bandman; Gerd Dethloff

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 3, page 801-824
  • ISSN: 0373-0956

Abstract

top
First we find effective bounds for the number of dominant rational maps f : X Y between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type { A · K X n } { B · K X n } 2 , where n = dim X , K X is the canonical bundle of X and A , B are some constants, depending only on n .Then we show that for any variety X there exist numbers c ( X ) and C ( X ) with the following properties:For any threefold Y of general type the number of dominant rational maps f : X Y is bounded above by c ( X ) .The number of threefolds Y , modulo birational equivalence, for which there exist dominant rational maps f : X Y , is bounded above by C ( X ) .If, moreover, X is a threefold of general type, we prove that c ( X ) and C ( X ) only depend on the index r X c of the canonical model X c of X and on K X c 3 .

How to cite

top

Bandman, Tanya, and Dethloff, Gerd. "Estimates of the number of rational mappings from a fixed variety to varieties of general type." Annales de l'institut Fourier 47.3 (1997): 801-824. <http://eudml.org/doc/75245>.

@article{Bandman1997,
abstract = {First we find effective bounds for the number of dominant rational maps $f:X \rightarrow Y$ between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type $\lbrace A \cdot K_X^n\rbrace ^\{\lbrace B \cdot K_X^n\rbrace ^2\}$, where $n=\{\rm dim\}\;X$, $K_X$ is the canonical bundle of $X$ and $A,B $ are some constants, depending only on $n$.Then we show that for any variety $X$ there exist numbers $c(X)$ and $C(X)$ with the following properties:For any threefold $Y$ of general type the number of dominant rational maps $f:X \rightarrow Y$ is bounded above by $c(X)$.The number of threefolds $Y$, modulo birational equivalence, for which there exist dominant rational maps $f:X \rightarrow Y$, is bounded above by $C(X)$.If, moreover, $X$ is a threefold of general type, we prove that $c(X)$ and $C(X)$ only depend on the index $r_\{X_c\}$ of the canonical model $X_c$ of $X$ and on $K_\{X_c\}^3$.},
author = {Bandman, Tanya, Dethloff, Gerd},
journal = {Annales de l'institut Fourier},
keywords = {number of dominant rational maps; threefold of general type},
language = {eng},
number = {3},
pages = {801-824},
publisher = {Association des Annales de l'Institut Fourier},
title = {Estimates of the number of rational mappings from a fixed variety to varieties of general type},
url = {http://eudml.org/doc/75245},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Bandman, Tanya
AU - Dethloff, Gerd
TI - Estimates of the number of rational mappings from a fixed variety to varieties of general type
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 801
EP - 824
AB - First we find effective bounds for the number of dominant rational maps $f:X \rightarrow Y$ between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type $\lbrace A \cdot K_X^n\rbrace ^{\lbrace B \cdot K_X^n\rbrace ^2}$, where $n={\rm dim}\;X$, $K_X$ is the canonical bundle of $X$ and $A,B $ are some constants, depending only on $n$.Then we show that for any variety $X$ there exist numbers $c(X)$ and $C(X)$ with the following properties:For any threefold $Y$ of general type the number of dominant rational maps $f:X \rightarrow Y$ is bounded above by $c(X)$.The number of threefolds $Y$, modulo birational equivalence, for which there exist dominant rational maps $f:X \rightarrow Y$, is bounded above by $C(X)$.If, moreover, $X$ is a threefold of general type, we prove that $c(X)$ and $C(X)$ only depend on the index $r_{X_c}$ of the canonical model $X_c$ of $X$ and on $K_{X_c}^3$.
LA - eng
KW - number of dominant rational maps; threefold of general type
UR - http://eudml.org/doc/75245
ER -

References

top
  1. [Ban1] T. BANDMAN, Surjective holomorphic mappings of projective manifolds, Siberian Math. Journ., 22 (1982), 204-210. Zbl0491.32019MR82j:32007
  2. [Ban2] T. BANDMAN, Topological invariants of a variety and the number of its holomorphic mappings, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, RIMS, Kyoto University, 1992, 188-202. 
  3. [BanMar] T. BANDMAN, D. MARKUSHEVICH, On the number of rational maps between varieties of general type, J. Math. Sci. Univ. Tokyo, 1 (1994), 423-433. Zbl0824.14009MR96c:14012
  4. [BPV] W. BARTH, C. PETERS, A. van de VEN, Compact complex surfaces, Springer Verlag, 1984. Zbl0718.14023MR86c:32026
  5. [Ben] X. BENVENISTE, Sur l'anneau canonique de certaine variété de dimension 3, Invent. Math., 73 (1983), 157-164. Zbl0539.14025MR85g:14020
  6. [BinFle] J. BINGENER, H. FLENNER, On the fibers of analytic mappings, V. Ancona, A. Silva (Eds.): Complex Analysis and Geometry, Plenum Press, 1993, 45-101. Zbl0792.13005MR95j:32012
  7. [CatSch] F. CATANESE, M. SCHNEIDER, Bounds for stable bundles and degrees of Weierstrass schemes, Math. Ann., 293 (1992), 579-594. Zbl0782.14016MR93j:14051
  8. [DelKat] P. DELIGNE, N. KATZ, Groupes de Monodromie en Géometrie Algébrique, (SGA 7 II), Exp. XVII, LNM 340 (1973), Springer Verlag. Zbl0258.00005MR50 #7135
  9. [Dem] J.-P. DEMAILLY, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. Zbl0783.32013MR94d:14007
  10. [DesMen1] M.M. DESCHAMPS and R.L. MENEGAUX, Applications rationelles séparables dominantes sur une variété de type général, Bull. Soc. Math. France, 106 (1978), 279-287. Zbl0417.14007
  11. [DesMen2] M.M. DESCHAMPS and R.L. MENEGAUX, Surfaces de type géneral dominées par une variété fixe, C.R. Acad. Sc. Paris, Ser.A, 288 (1979), 765-767. Zbl0419.14006MR80e:14011
  12. [DesMen3] M.M. DESCHAMPS and R.L. MENEGAUX, Surfaces de type géneral dominées par une variété fixe II, C.R. Acad. Sc. Paris, Ser.A, 291 (1980), 587-590. Zbl0453.14014
  13. [Det] G. DETHLOFF, Iitaka-Severi's Conjecture for complex threefolds, Preprint Mathematica Gottingensis, 29-1995, Duke eprint 9505016. 
  14. [Elk] R. ELKIK, Rationalité des singularités canoniques, Invent. Math., 64 (1981), 1-6. Zbl0498.14002MR83a:14003
  15. [Flen] H. FLENNER, Rational singularities, Arch. Math., 36 (1981), 35-44. Zbl0454.14001
  16. [Flet] A.R. FLETCHER, Contributions to Riemann-Roch on projective threefolds with only canonical singularities and applications, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 221-231. Proc Symp. in Pure Math., vol. 46, 1987. Zbl0662.14026
  17. [Fra] M. de FRANCHIS, Un Teorema sulle involuzioni irrazionali., Rend. Circ. Mat. Palermo, 36 (1913), 368. JFM44.0657.02
  18. [Fuj] T. FUJITA, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Japan, 38 (1986), 20-37. Zbl0627.14031MR87e:14036
  19. [FulLaz] W. FULTON, R. LAZARSFELD, Positive polynomials for ample vector bundles, Ann. Math., 118 (1983), 35-60. Zbl0537.14009MR85e:14021
  20. [Gra] H. GRAUERT, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. IHES, 5 (1960), 1-64. Zbl0158.32901
  21. [GriHar] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
  22. [Gro] A. GROTHENDIECK, EGA III, Publ. IHES, 17 (1963), 1-91. 
  23. [Han] M. HANAMURA, Stability of the pluricanonical maps of threefolds, T. Oda (Ed.): Algebraic Geometry, Sendai 1985, 185-202. Advanced Studies in Pure Math., vol. 10, 1987. Zbl0639.14019
  24. [Har] R. HARTSHORNE, Algebraic Geometry, Springer Verlag, 1977. Zbl0367.14001MR57 #3116
  25. [Hir] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero I, Ann. Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  26. [HowSom1] A. HOWARD, A.J. SOMMESE, On the orders of the automorphism groupes of certain projective manifolds, J. Hano et al. (Eds.): Manifolds and Lie Groupes. Progress in Math., 14 Birkhäuser 1981, 145-158. Zbl0483.32016MR84e:14011
  27. [HowSom2] A. HOWARD and A. SOMMESE, On the theorem of de Franchis, Annali Scuola Norm. Sup. Pisa, 10 (1983), 429-436. Zbl0534.14016MR85k:32048
  28. [Iit] S. IITAKA, Algebraic Geometry, Springer Verlag, 1982. Zbl0491.14006MR84j:14001
  29. [Kan] E. KANI, Bounds on the number of non-rational subfields of a function field, Inv. Math., 85 (1986), 199-215. Zbl0615.12017MR87i:14021
  30. [Kaw] Y. KAWAMATA, On the finiteness of generators of pluricanonical ring for a threefold of general type, Amer. J. Math., 106 (1984), 1503-1512. Zbl0587.14027MR86j:14032
  31. [Kob] S. KOBAYASHI, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. Zbl0346.32031MR54 #3032
  32. [KobOch] S. KOBAYASHI, T. OCHIAI, Meromorphic mappings into complex spaces of general type, Inv. Math., 31 (1975), 7-16. Zbl0331.32020MR53 #5948
  33. [Kol1] J. KOLLÁR, Towards moduli of singular varieties, Compos. Math., 56 (1985), 369-398. Zbl0666.14003MR87e:14009
  34. [Kol2] J. KOLLÁR, Higher direct images of dualizing sheaves I, Annals of Math., 123, 11-42. Zbl0598.14015MR87c:14038
  35. [KolMor] J. KOLLÁR and S. MORI, Classification of three-dimensional flips, J. of the AMS, 5 (1992), 533-703. Zbl0773.14004MR93i:14015
  36. [Luo1] T. LUO, Global 2-forms on regular threefolds of general type, Duke Math. J., 71 (1993), 859-869. Zbl0838.14032MR94k:14032
  37. [Luo2] T. LUO, Plurigenera of regular threefolds, Math. Z., 217 (1994), 37-46. Zbl0808.14029MR95i:14037
  38. [Mae1] K. MAEHARA, Families of varieties dominated by a variety, Proc. Japan Acad., Ser. A, 55 (1979), 146-151. Zbl0432.14003MR82e:14018
  39. [Mae2] K. MAEHARA, A finiteness property of variety of general type, Math. Ann., 262 (1983), 101-123. Zbl0438.14011MR85e:14015
  40. [Mae3] K. MAEHARA, Diophantine problem of algebraic varieties and Hodge theory, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 167-187. RIMS, Kyoto University, 1992. 
  41. [MatMum] T. MATSUSAKA, D. MUMFORD, Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., 86 (1964), 668-684. Zbl0128.15505MR30 #2005
  42. [Mil] J. MILNOR, On the Betti numbers of real projective varieties, Proc. AMS, 15 (1964), 275-280. Zbl0123.38302MR28 #4547
  43. [Mor] S. MORI, Flip theorem and the existence of minimal models for threefolds, J. AMS, 1 (1988), 117-253. Zbl0649.14023MR89a:14048
  44. [Nog] J. NOGUCHI, Meromorphic mappings into compact hyperbolic complex spaces and geometric diophantine problems, Inte. J. Math., 3 (1992), 277-289, 677. Zbl0759.32016MR93c:32036
  45. [Rei1] M. REID, Canonical threefolds, A. Beauville (Ed.): Algebraic Geometry, Angers 1979, 273-310, Sijthoff and Noordhoff, 1980. Zbl0451.14014
  46. [Rei2] M. REID, Young person's guide to canonical singularities, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 345-414. Proc Symp. in Pure Math., 46, 1987. Zbl0634.14003
  47. [Sam] P. SAMUEL, Complements a un article de Hans Grauert sur la conjecture de Mordell, Publ. Math. IHES, 29 (1966), 311-318. Zbl0144.20102MR34 #4272
  48. [Suz] M. SUZUKI, Moduli spaces of holomorphic mappings into hyperbolically embedded complex spaces and hyperbolic fibre spaces, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 157-166 RIMS, Kyoto University 1992. 
  49. [Sza] E. SZABO, Bounding the automorphisms groups, Math. Ann., 304 (1996), 801-811. Zbl0845.14009MR97h:14060
  50. [Tsa1] I.H. TSAI, Dominating the varieties of general type, to appear: J. reine angew. Math. (1996), 29 pages. Zbl0857.14022
  51. [Tsa2] I.H. TSAI, Dominant maps and dominated surfaces of general type, Preprint (1996), 44 pages. 
  52. [Tsa3] I.H. TSAI, Chow varieties and finiteness theorems for dominant maps, Preprint (1996), 33 pages. Zbl0980.14009
  53. [Uen] K. UENO, Classification theory of algebraic varieties and compact complex spaces, LNM 439 (1975), Springer Verlag. Zbl0299.14007MR58 #22062
  54. [ZaiLin] M.G. ZAIDENBERG and V.Ya. LIN, Finiteness theorems for holomorphic maps, Several Complex Variables III, Encyclopaedia Math. Sciences, vol., 9, Springer Verlag, 1989, 113-172. Zbl0658.32023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.