Estimates of the number of rational mappings from a fixed variety to varieties of general type
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 3, page 801-824
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBandman, Tanya, and Dethloff, Gerd. "Estimates of the number of rational mappings from a fixed variety to varieties of general type." Annales de l'institut Fourier 47.3 (1997): 801-824. <http://eudml.org/doc/75245>.
@article{Bandman1997,
abstract = {First we find effective bounds for the number of dominant rational maps $f:X \rightarrow Y$ between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type $\lbrace A \cdot K_X^n\rbrace ^\{\lbrace B \cdot K_X^n\rbrace ^2\}$, where $n=\{\rm dim\}\;X$, $K_X$ is the canonical bundle of $X$ and $A,B $ are some constants, depending only on $n$.Then we show that for any variety $X$ there exist numbers $c(X)$ and $C(X)$ with the following properties:For any threefold $Y$ of general type the number of dominant rational maps $f:X \rightarrow Y$ is bounded above by $c(X)$.The number of threefolds $Y$, modulo birational equivalence, for which there exist dominant rational maps $f:X \rightarrow Y$, is bounded above by $C(X)$.If, moreover, $X$ is a threefold of general type, we prove that $c(X)$ and $C(X)$ only depend on the index $r_\{X_c\}$ of the canonical model $X_c$ of $X$ and on $K_\{X_c\}^3$.},
author = {Bandman, Tanya, Dethloff, Gerd},
journal = {Annales de l'institut Fourier},
keywords = {number of dominant rational maps; threefold of general type},
language = {eng},
number = {3},
pages = {801-824},
publisher = {Association des Annales de l'Institut Fourier},
title = {Estimates of the number of rational mappings from a fixed variety to varieties of general type},
url = {http://eudml.org/doc/75245},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Bandman, Tanya
AU - Dethloff, Gerd
TI - Estimates of the number of rational mappings from a fixed variety to varieties of general type
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 801
EP - 824
AB - First we find effective bounds for the number of dominant rational maps $f:X \rightarrow Y$ between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type $\lbrace A \cdot K_X^n\rbrace ^{\lbrace B \cdot K_X^n\rbrace ^2}$, where $n={\rm dim}\;X$, $K_X$ is the canonical bundle of $X$ and $A,B $ are some constants, depending only on $n$.Then we show that for any variety $X$ there exist numbers $c(X)$ and $C(X)$ with the following properties:For any threefold $Y$ of general type the number of dominant rational maps $f:X \rightarrow Y$ is bounded above by $c(X)$.The number of threefolds $Y$, modulo birational equivalence, for which there exist dominant rational maps $f:X \rightarrow Y$, is bounded above by $C(X)$.If, moreover, $X$ is a threefold of general type, we prove that $c(X)$ and $C(X)$ only depend on the index $r_{X_c}$ of the canonical model $X_c$ of $X$ and on $K_{X_c}^3$.
LA - eng
KW - number of dominant rational maps; threefold of general type
UR - http://eudml.org/doc/75245
ER -
References
top- [Ban1] T. BANDMAN, Surjective holomorphic mappings of projective manifolds, Siberian Math. Journ., 22 (1982), 204-210. Zbl0491.32019MR82j:32007
- [Ban2] T. BANDMAN, Topological invariants of a variety and the number of its holomorphic mappings, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, RIMS, Kyoto University, 1992, 188-202.
- [BanMar] T. BANDMAN, D. MARKUSHEVICH, On the number of rational maps between varieties of general type, J. Math. Sci. Univ. Tokyo, 1 (1994), 423-433. Zbl0824.14009MR96c:14012
- [BPV] W. BARTH, C. PETERS, A. van de VEN, Compact complex surfaces, Springer Verlag, 1984. Zbl0718.14023MR86c:32026
- [Ben] X. BENVENISTE, Sur l'anneau canonique de certaine variété de dimension 3, Invent. Math., 73 (1983), 157-164. Zbl0539.14025MR85g:14020
- [BinFle] J. BINGENER, H. FLENNER, On the fibers of analytic mappings, V. Ancona, A. Silva (Eds.): Complex Analysis and Geometry, Plenum Press, 1993, 45-101. Zbl0792.13005MR95j:32012
- [CatSch] F. CATANESE, M. SCHNEIDER, Bounds for stable bundles and degrees of Weierstrass schemes, Math. Ann., 293 (1992), 579-594. Zbl0782.14016MR93j:14051
- [DelKat] P. DELIGNE, N. KATZ, Groupes de Monodromie en Géometrie Algébrique, (SGA 7 II), Exp. XVII, LNM 340 (1973), Springer Verlag. Zbl0258.00005MR50 #7135
- [Dem] J.-P. DEMAILLY, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. Zbl0783.32013MR94d:14007
- [DesMen1] M.M. DESCHAMPS and R.L. MENEGAUX, Applications rationelles séparables dominantes sur une variété de type général, Bull. Soc. Math. France, 106 (1978), 279-287. Zbl0417.14007
- [DesMen2] M.M. DESCHAMPS and R.L. MENEGAUX, Surfaces de type géneral dominées par une variété fixe, C.R. Acad. Sc. Paris, Ser.A, 288 (1979), 765-767. Zbl0419.14006MR80e:14011
- [DesMen3] M.M. DESCHAMPS and R.L. MENEGAUX, Surfaces de type géneral dominées par une variété fixe II, C.R. Acad. Sc. Paris, Ser.A, 291 (1980), 587-590. Zbl0453.14014
- [Det] G. DETHLOFF, Iitaka-Severi's Conjecture for complex threefolds, Preprint Mathematica Gottingensis, 29-1995, Duke eprint 9505016.
- [Elk] R. ELKIK, Rationalité des singularités canoniques, Invent. Math., 64 (1981), 1-6. Zbl0498.14002MR83a:14003
- [Flen] H. FLENNER, Rational singularities, Arch. Math., 36 (1981), 35-44. Zbl0454.14001
- [Flet] A.R. FLETCHER, Contributions to Riemann-Roch on projective threefolds with only canonical singularities and applications, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 221-231. Proc Symp. in Pure Math., vol. 46, 1987. Zbl0662.14026
- [Fra] M. de FRANCHIS, Un Teorema sulle involuzioni irrazionali., Rend. Circ. Mat. Palermo, 36 (1913), 368. JFM44.0657.02
- [Fuj] T. FUJITA, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Japan, 38 (1986), 20-37. Zbl0627.14031MR87e:14036
- [FulLaz] W. FULTON, R. LAZARSFELD, Positive polynomials for ample vector bundles, Ann. Math., 118 (1983), 35-60. Zbl0537.14009MR85e:14021
- [Gra] H. GRAUERT, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. IHES, 5 (1960), 1-64. Zbl0158.32901
- [GriHar] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
- [Gro] A. GROTHENDIECK, EGA III, Publ. IHES, 17 (1963), 1-91.
- [Han] M. HANAMURA, Stability of the pluricanonical maps of threefolds, T. Oda (Ed.): Algebraic Geometry, Sendai 1985, 185-202. Advanced Studies in Pure Math., vol. 10, 1987. Zbl0639.14019
- [Har] R. HARTSHORNE, Algebraic Geometry, Springer Verlag, 1977. Zbl0367.14001MR57 #3116
- [Hir] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero I, Ann. Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
- [HowSom1] A. HOWARD, A.J. SOMMESE, On the orders of the automorphism groupes of certain projective manifolds, J. Hano et al. (Eds.): Manifolds and Lie Groupes. Progress in Math., 14 Birkhäuser 1981, 145-158. Zbl0483.32016MR84e:14011
- [HowSom2] A. HOWARD and A. SOMMESE, On the theorem of de Franchis, Annali Scuola Norm. Sup. Pisa, 10 (1983), 429-436. Zbl0534.14016MR85k:32048
- [Iit] S. IITAKA, Algebraic Geometry, Springer Verlag, 1982. Zbl0491.14006MR84j:14001
- [Kan] E. KANI, Bounds on the number of non-rational subfields of a function field, Inv. Math., 85 (1986), 199-215. Zbl0615.12017MR87i:14021
- [Kaw] Y. KAWAMATA, On the finiteness of generators of pluricanonical ring for a threefold of general type, Amer. J. Math., 106 (1984), 1503-1512. Zbl0587.14027MR86j:14032
- [Kob] S. KOBAYASHI, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. Zbl0346.32031MR54 #3032
- [KobOch] S. KOBAYASHI, T. OCHIAI, Meromorphic mappings into complex spaces of general type, Inv. Math., 31 (1975), 7-16. Zbl0331.32020MR53 #5948
- [Kol1] J. KOLLÁR, Towards moduli of singular varieties, Compos. Math., 56 (1985), 369-398. Zbl0666.14003MR87e:14009
- [Kol2] J. KOLLÁR, Higher direct images of dualizing sheaves I, Annals of Math., 123, 11-42. Zbl0598.14015MR87c:14038
- [KolMor] J. KOLLÁR and S. MORI, Classification of three-dimensional flips, J. of the AMS, 5 (1992), 533-703. Zbl0773.14004MR93i:14015
- [Luo1] T. LUO, Global 2-forms on regular threefolds of general type, Duke Math. J., 71 (1993), 859-869. Zbl0838.14032MR94k:14032
- [Luo2] T. LUO, Plurigenera of regular threefolds, Math. Z., 217 (1994), 37-46. Zbl0808.14029MR95i:14037
- [Mae1] K. MAEHARA, Families of varieties dominated by a variety, Proc. Japan Acad., Ser. A, 55 (1979), 146-151. Zbl0432.14003MR82e:14018
- [Mae2] K. MAEHARA, A finiteness property of variety of general type, Math. Ann., 262 (1983), 101-123. Zbl0438.14011MR85e:14015
- [Mae3] K. MAEHARA, Diophantine problem of algebraic varieties and Hodge theory, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 167-187. RIMS, Kyoto University, 1992.
- [MatMum] T. MATSUSAKA, D. MUMFORD, Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., 86 (1964), 668-684. Zbl0128.15505MR30 #2005
- [Mil] J. MILNOR, On the Betti numbers of real projective varieties, Proc. AMS, 15 (1964), 275-280. Zbl0123.38302MR28 #4547
- [Mor] S. MORI, Flip theorem and the existence of minimal models for threefolds, J. AMS, 1 (1988), 117-253. Zbl0649.14023MR89a:14048
- [Nog] J. NOGUCHI, Meromorphic mappings into compact hyperbolic complex spaces and geometric diophantine problems, Inte. J. Math., 3 (1992), 277-289, 677. Zbl0759.32016MR93c:32036
- [Rei1] M. REID, Canonical threefolds, A. Beauville (Ed.): Algebraic Geometry, Angers 1979, 273-310, Sijthoff and Noordhoff, 1980. Zbl0451.14014
- [Rei2] M. REID, Young person's guide to canonical singularities, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 345-414. Proc Symp. in Pure Math., 46, 1987. Zbl0634.14003
- [Sam] P. SAMUEL, Complements a un article de Hans Grauert sur la conjecture de Mordell, Publ. Math. IHES, 29 (1966), 311-318. Zbl0144.20102MR34 #4272
- [Suz] M. SUZUKI, Moduli spaces of holomorphic mappings into hyperbolically embedded complex spaces and hyperbolic fibre spaces, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 157-166 RIMS, Kyoto University 1992.
- [Sza] E. SZABO, Bounding the automorphisms groups, Math. Ann., 304 (1996), 801-811. Zbl0845.14009MR97h:14060
- [Tsa1] I.H. TSAI, Dominating the varieties of general type, to appear: J. reine angew. Math. (1996), 29 pages. Zbl0857.14022
- [Tsa2] I.H. TSAI, Dominant maps and dominated surfaces of general type, Preprint (1996), 44 pages.
- [Tsa3] I.H. TSAI, Chow varieties and finiteness theorems for dominant maps, Preprint (1996), 33 pages. Zbl0980.14009
- [Uen] K. UENO, Classification theory of algebraic varieties and compact complex spaces, LNM 439 (1975), Springer Verlag. Zbl0299.14007MR58 #22062
- [ZaiLin] M.G. ZAIDENBERG and V.Ya. LIN, Finiteness theorems for holomorphic maps, Several Complex Variables III, Encyclopaedia Math. Sciences, vol., 9, Springer Verlag, 1989, 113-172. Zbl0658.32023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.