Bernstein classes

N. Roytwarf; Yosef Yomdin

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 3, page 825-858
  • ISSN: 0373-0956

Abstract

top
One of the classical Bernstein inequalities compares the maxima of a polynomial of a given degree on the interval [-1,1] and on the ellipse in the complex plane with the focuses -1, 1 and the semiaxes R . We prove a similar inequality for a branch of an algebraic function of a given degree on the maximal disk of its regularity, with the explicitly given constant, depending on the degree only. In particular, this improves a recent inequality of Fefferman and Narasimhan and answers one of their questions. We present in detail various properties of the classes of functions, satisfying Bernstein type inequalities and various approaches to establishing such inequalities.

How to cite

top

Roytwarf, N., and Yomdin, Yosef. "Bernstein classes." Annales de l'institut Fourier 47.3 (1997): 825-858. <http://eudml.org/doc/75246>.

@article{Roytwarf1997,
abstract = {One of the classical Bernstein inequalities compares the maxima of a polynomial of a given degree on the interval [-1,1] and on the ellipse in the complex plane with the focuses -1, 1 and the semiaxes $R$. We prove a similar inequality for a branch of an algebraic function of a given degree on the maximal disk of its regularity, with the explicitly given constant, depending on the degree only. In particular, this improves a recent inequality of Fefferman and Narasimhan and answers one of their questions. We present in detail various properties of the classes of functions, satisfying Bernstein type inequalities and various approaches to establishing such inequalities.},
author = {Roytwarf, N., Yomdin, Yosef},
journal = {Annales de l'institut Fourier},
keywords = {Bernstein inequality; algebraic functions; Taylor coefficients},
language = {eng},
number = {3},
pages = {825-858},
publisher = {Association des Annales de l'Institut Fourier},
title = {Bernstein classes},
url = {http://eudml.org/doc/75246},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Roytwarf, N.
AU - Yomdin, Yosef
TI - Bernstein classes
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 825
EP - 858
AB - One of the classical Bernstein inequalities compares the maxima of a polynomial of a given degree on the interval [-1,1] and on the ellipse in the complex plane with the focuses -1, 1 and the semiaxes $R$. We prove a similar inequality for a branch of an algebraic function of a given degree on the maximal disk of its regularity, with the explicitly given constant, depending on the degree only. In particular, this improves a recent inequality of Fefferman and Narasimhan and answers one of their questions. We present in detail various properties of the classes of functions, satisfying Bernstein type inequalities and various approaches to establishing such inequalities.
LA - eng
KW - Bernstein inequality; algebraic functions; Taylor coefficients
UR - http://eudml.org/doc/75246
ER -

References

top
  1. [1] V.I. ARNOLD, YU. IL'YASHENKO, Ordinary differential equations, Encyclopedia of Mathematical Sciences 1 (Dynamical Systems - I), Springer, Berlin, 1988. Zbl0718.34070
  2. [2] N.N. BAUTIN, On the number of limit cycles which appear with the variation of coefficients from an equilibrium state of the type focus or center, Amer. Math. Soc. Trans. 100 (1954) 1-19, Providence, R.I.; reprinted in: Stability and Dynamical Systems, Amer. Math. Soc. Trans. Series, I 5 (1962), 396-413. Zbl0059.08201
  3. [3] S. BERNSTEIN, Sur une propriété des polynômes, Proc. Kharkov Math. Society, Serie 2, v. 14 (1913), 1-6. 
  4. [4] M. BIERNACKI, Sur les fonctions multivalentes d'ordre p, C.R. Acad. Sci. (Paris), 203 (1936), 449-451. Zbl0014.31904JFM62.0377.01
  5. [5] L. BOS, N. LEVENBERG, P. MILMAN, B.A. TAYLOR, Tangential Markov inequalities characterize algebraic submanifolds of ℝN, Indiana Univ. Math. J., 44 (1995), 115-137. Zbl0824.41015MR96i:41009
  6. [6] L. BOS, P. MILMAN, Sobolev-Gagliardo-Nirenberg and Markov Type Inequalities on Subanalytic Domains, Geometric and Functional Analysis, 5 (6) (1995), 853-923. Zbl0848.46022MR97e:46038
  7. [7] M. BRISKIN, Y. YOMDIN, Algebraic families of analytic functions, I, to appear, J. of Diff. Equations. Zbl0886.34005
  8. [8] M. BRISKIN, Y. YOMDIN, Algebraic families of analytic functions, II, in preparation. Zbl0886.34005
  9. [9] YU. BRUDNYI, M. GANZBURG, On an extremal problem for polynomials of n variables, Math. USSR Izv., 37 (1973), 344-355. Zbl0283.26012
  10. [10] A. BRUDNYI, Bernstein-type inequality for algebraic functions, preprint, 1996. 
  11. [11] L.A. CHERKAS, Number of limit cycles of an autonomous second-order system, Differ. Eq., (1976), 666-668. Zbl0365.34039
  12. [12] J. CHAVARRIGA, Integrable systems in the plane with a center type linear part, Applicationes Mathematicae, 22 (1994), 285-309. Zbl0809.34002MR95g:34043
  13. [13] C. CHICONE, M. JACOBS, Bifurcations of critical periods for plane vector fields, Trans. Amer. Math. Soc., 312 (1989), 433-486. Zbl0678.58027MR89h:58139
  14. [14] D.V. CHUDNOVSKY, G.V. CHUDNOVSKY, On expansions of algebraic functions in power and Puiseux series, I, J. of Complexity, 2 (1986), 271-294. Zbl0629.68038MR90d:68031a
  15. [15] D.V. CHUDNOVSKY, G.V. CHUDNOVSKY, On expansions of algebraic functions in power and Puiseux series, II, J. of Complexity, 3 (1987), 1-25. Zbl0656.34003MR90d:68031b
  16. [16] C. FEFFERMAN, R. NARASIMHAN, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier, Grenoble, 43-5 (1993), 1319-1348. Zbl0842.26013MR95e:32007
  17. [17] C. FEFFERMAN, R. NARASIMHAN, On the polynomial-like behaviour of certain algebraic functions, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 1091-1179. Zbl0811.14046MR95k:32011
  18. [18] C. FEFFERMAN, R. NARASIMHAN, A local Bernstein inequality on real algebraic varieties, preprint, 1995. Zbl0911.32011
  19. [19] C. FEFFERMAN, R. NARASIMHAN, Bernstein's inequality and the resolution of spaces of analytic functions, to appear in Duke Math. J. Zbl0854.32006
  20. [20] J.-P. FRANCOISE and C.C. PUGH, Keeping track of limit cycles, J. Diff. Equations, 65 (1986), 139-157. Zbl0602.34019MR88a:58162
  21. [21] J.-P. FRANCOISE and Y. YOMDIN, Bernstein inequality and applications to analytic geometry and differential equations, to appear, J. of Functional Anal. Zbl0869.34008
  22. [22] J.-P. FRANCOISE, Y. YOMDIN, Projection of analytic sets and Bernstein inequalities, preprint, 1996. Zbl0915.30002
  23. [23] A. GABRIELOV, Projections of semi-analytic sets, Funct. Anal. Appl., 2(4) (1968), 282-291. Zbl0179.08503MR39 #7137
  24. [24] A. GABRIELOV, Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Math. Res. Lett., 2 (1995), 1-15. Zbl0845.32003
  25. [25] A. GABRIELOV, Multiplicities of Pfaffian intersections and the Lojasiewicz inequality, Selecta Matematica, New Series, 11 (1995), 113-127. Zbl0889.32005MR96d:32007
  26. [26] A. GABRIELOV, Formal relations between analytic functions, USSR Izv., 7 (1973), 1056-1088. Zbl0297.32007
  27. [27] A. GASULL, A. GUILLAMON, V. MAÑOSA, Centre and isochronicity conditions for systems with homogeneous nonlinearities, preprint, 1995. Zbl0909.34030MR99c:34048
  28. [28] L. GAVRILOV, Isochronism of plane polynomial Hamiltonian systems, Prepublication no. 49, Laboratoire de Topologie et Geometrie, Toulouse, 1995. 
  29. [29] W.K. HAYMAN, Differential inequalities and local valency, Pacific J. of Math., 44(1) (1973), 117-137. Zbl0248.30026MR47 #5240
  30. [30] YU. IL'YASHENKO, Divergence of the linearizing series, Funct. Anal. Appl., 13 (3) (1979), 87-88. 
  31. [31] YU. IL'YASHENKO, S. YAKOVENKO, Counting real zeroes of analytic functions, satisfying linear ordinary differential equations, J. Diff. Equations, 126 (1) (1996), 87-105. Zbl0847.34010
  32. [32] YU. IL'YASHENKO, S. YAKOVENKO, Double exponential estimate for the number of real zeroes of complete abelian integrals, Inventiones Mathematicae, 121 (1995), 613-650. Zbl0865.34007
  33. [33] A.G. KHOVANSKI, Fewnomials, AMS Publ., Providence, RI, 1991. 
  34. [34] I. LAINE, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Math., 15, Walter de Gruyter, Berlin, New York, 1993. Zbl0784.30002
  35. [35] K. MAHLER, Lectures on transcendental numbers, LNM 546, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0332.10019
  36. [36] A.L. NETO, On the number of solutions of the equation x´ = P(x,t), for which x(0) = x(1), Inventiones Math., 59 (1980), 67-76. Zbl0448.34012
  37. [37] D. NOVIKOV, S. YAKOVENKO, Simple exponential estimate for the number of zeroes of complete Abelian integrals, Ann. Inst. Fourier, Grenoble, 45-4 (1995), 897-927. Zbl0832.58028MR97b:14053
  38. [38] G. PETROV, A. KHOVANSKI, On a linear bound for the number of zeroes of abelian integrals, to appear. 
  39. [39] R. ROUSSARIE, A note on finite cyclicity and Hilbert's 16th problem, LNM 1331, Springer, New York-Berlin (1988), 161-168. Zbl0676.58046MR90b:58227
  40. [40] R. ROUSSARIE, Cyclicité finie des lacets et des points cuspidaux, Nonlinearity, 2 (1989), 73-117. Zbl0679.58037MR90m:58169
  41. [41] N. ROYTVARF, Bernstein inequality for algebraic functions and for solutions of linear differential equations, Ph. D. thesis, Rehovot, 1996. 
  42. [42] N. ROYTVARF, A Markov-type inequality for Wronskians, in preparation. 
  43. [43] N. ROYTVARF, Counting zeroes of linear combinations of analytic functions, in preparation. 
  44. [44] N. ROYTVARF, Taylor coefficients of solutions of linear differential equations with polynomial coefficients, in preparation. 
  45. [45] N. ROYTVARF, Y. YOMDIN, Bernstein's inequality for algebraic functions, in preparation. Zbl1078.30034
  46. [46] A. SADULLAEV, An estimate for polynomials on analytic sets, Math. USSR Izv., 20 (1983), 493-502. Zbl0582.32023
  47. [47] C.L. SIEGEL, Transcendental numbers, Princeton University Press, Princeton, 1949. Zbl0039.04402MR11,330c
  48. [48] A.J. VAN DER POORTEN, On the number of zeroes of functions, Indag. Math. Zbl0364.30005
  49. [49] M. VOORHOEVE, A.J. VAN DER POORTEN, R. TIJDEMAN, On the number of zeroes of certain functions, Indag. Math., (1975), 407-416. Zbl0316.30005MR53 #3274
  50. [50] Y. YOMDIN, Volume growth and entropy, Israel J. Math., 57, 3 (1987), 285-300. Zbl0641.54036MR90g:58008
  51. [51] Y. YOMDIN, Ck resolution of semialgebraic mappings, Israel J. Math., 57, 3 (1987), 301-317. Zbl0641.54037MR90g:58009
  52. [52] Y. YOMDIN, Local complexity growth for iterations of real analytic mappings and semi-continuity moduli of the entropy, Erg. Th. and Dynam. Syst., 11 (1991), 583-602. Zbl0756.58041MR92m:58076
  53. [53] Y. YOMDIN, Zeroes of analytic functions and intersection growth, in preparation. 
  54. [54] Y. YOMDIN, Oscillation of analytic curves, preprint, 1995. Zbl0897.32001
  55. [55] Y. YOMDIN, Global Bernstein inequality on algebraic curves, in preparation. 
  56. [56] H. ŹOLADEK, On certain generalization of Bautin's theorem, Nonlinearity, 7 (1994), 273-280. Zbl0838.34035MR94m:34098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.